Bài 37.10* trang 89 Sách bài tập Lý 10 : Một ống mao dẫn dài và mỏng có hai đầu đều hở được cắm thẳng đứng...
Một ống mao dẫn dài và mỏng có hai đầu đều hở được cắm thẳng đứng xuống nưởc sao cho toàn bộ chiều dài của ống ngập trong nước. Dùng tay bịt kín đầu dưới của ống và nhấc ống thẳng đứng lên khỏi nước. Sau đó buông nhẹ tay để đầu dưới của ống lại hở. Xác định độ cao của cột nước còn đọng trong ống. ...
Một ống mao dẫn dài và mỏng có hai đầu đều hở được cắm thẳng đứng xuống nưởc sao cho toàn bộ chiều dài của ống ngập trong nước. Dùng tay bịt kín đầu dưới của ống và nhấc ống thẳng đứng lên khỏi nước. Sau đó buông nhẹ tay để đầu dưới của ống lại hở. Xác định độ cao của cột nước còn đọng trong ống. Cho biết đường kính của ống là 2,0 mm, khối lượng riêng của nước là 1000 kg/m3 và hệ số căng bể mặt của nước là 72,5.10-3 N/m, lấy g ≈ 9,8 m/s2.
Hướng dẫn trả lời
Cột nước còn đọng lại được trong ống mao dẫn là do tác dụng cân bằng giữa trọng lượng P của cột nước với tổng các lực dính ướt Fd của thành ống tạo thành mặt khum lõm ở đầu trên và mặt khum lồi ở đầu dưới của cột nước (H.37.3G). Tại vị trí tiếp xúc giữa hai mặt khum của cột nước với thành ống, các lực dính ướt Fd đều hướng thẳng đứng lên phía trên và có cùng độ lớn với lực căng bề mặt Fc của nước.
Fd = Fc = σπd
với d là đường kính của ống mao dẫn và σ là hệ số căng bề mặt của nước. Nếu gọi D là khối lượng riêng của nước và h là độ cao của cột nước trong ống thì trọng lượng cột nước bằng : (P = mg = Dgh{{pi {d^2}} over 4})
Khi đó điều kiện cân bằng của cột nước đọng lại trong ống là :
(P = 2{F_d} = > Dgh{{pi {d^2}} over 4} = 2sigma pi d)
Từ đó suy ra : (h = {{8sigma } over {Dgd}} = {{{{8.72.10}^{ – 3}}} over {1000.9,8.2,{{0.10}^{ – 3}}}} approx 29,4left( {mm} ight))