Bài 35 trang 123 – Sách giáo khoa môn Toán 7 tập 1, Bài 35. Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua H thuộc tia Ot , kẻ...
Bài 35. Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua H thuộc tia Ot , kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự A và B.. Bài 35 trang 123 – Sách giáo khoa toán 7 tập 1 – Trường hợp bằng nhau thứ ba của tam giác góc – cạnh – góc (G.C.G) Bài 35 . Cho góc xOy khác ...
Bài 35. Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua H thuộc tia Ot , kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự A và B.
a) Chứng minh rằng OA=OB.
b ) Lấy điểm C thuộc tia Ot, chứng minh rằng CA=CB và (widehat{OAC })= (widehat{OBC }).
Giải
a) ∆AOH và ∆BOH có:(widehat{AOH})=(widehat{BOH})(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
(widehat{OAC})=(widehat{OAB})(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
(widehat{OAC })= (widehat{OBC })( góc tương ứng).