Bài 3.40 trang 162 Sách bài tập (SBT) Hình học 11
Cho hình lăng trụ tam giác ABC.A’B’C’có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60° và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A’B’C’) trùng với trung điểm của cạnh B’C’. ...
Cho hình lăng trụ tam giác ABC.A’B’C’có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60° và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A’B’C’) trùng với trung điểm của cạnh B’C’.
Cho hình lăng trụ tam giác ABC.A’B’C’có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60° và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A’B’C’) trùng với trung điểm của cạnh B’C’.
a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.
b) Chứng minh rằng mặt bên BCC’B’ là một hình vuông.
Giải:
a) Gọi I là trung điểm của cạnh B’C’. Theo giả thiết ta có AI ⊥ (A’B’C’) và (widehat {AA'I} = {60^0}). Ta biết rằng hai mặt phẳng (ABC) và (A’B’C’) song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.
Do đó (AI = AA'.sin {60^0} = a.{{sqrt 3 } over 2} = {{asqrt 3 } over 2})
b)
(left. matrix{
B'C' ot A'I hfill cr
B'C' ot AI hfill cr}
ight} Rightarrow B'C' ot left( {AIA'}
ight))
( Rightarrow B'C' ot AA')
Mà (AA'parallel BB'parallel CC') nên B’C’ ⊥ BB’
Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.
Sachbaitap.com