Bài 21 trang 218 Sách bài tập (SBT) Toán Đại số 10
Rút gọn ...
Rút gọn
Rút gọn
a) ({{{{sin }^2}2alpha + 4{{sin }^4}alpha - 4{{sin }^2}alpha c{ m{o}}{{ m{s}}^2}alpha } over {4 - {{sin }^2}2alpha - 4{{sin }^2}alpha }})
b) (3 - 4cos 2a + cos 4a)
c) (cos 4a - sin 4acot 2a)
d) ({{{mathop{ m cota} olimits} + an a} over {1 + an 2a an a}})
Gợi ý làm bài
a)
(eqalign{
& {{{{sin }^2}2alpha + 4{{sin }^2}4alpha - 4{{sin }^2}alpha {{cos }^2}alpha } over {4 - {{sin }^2}2alpha - 4{{sin }^2}alpha }} cr
& = {{{{sin }^2}2alpha + 4{{sin }^4}alpha - {{sin }^2}2alpha } over {4{{cos }^2}a - 4{{sin }^2}2alpha {{cos }^2}alpha }} cr} )
( = {{4{{sin }^2}alpha } over {4co{s^2}alpha (1 - {{sin }^2}alpha )}} = { an ^4}alpha )
b)
(eqalign{
& 3 - 4cos 2a + cos 4a cr
& = 3 - 4(1 - 2{sin ^2}a) + (1 - 2{sin ^2}2a) cr} )
(eqalign{
& = 8{sin ^2}a - 8{sin ^2}a{cos ^2}a cr
& = 8{sin ^2}a(1 - {cos ^2}a) cr} )
( = 8{sin ^4}a)
c)
(eqalign{
& cos 4a - sin 4acot 2a cr
& = 2{cos ^2}2a - 1 - 2sin 2acos 2a{{cos 2a} over {sin 2a}} = - 1 cr} )
d) ({{cot a + an a} over {1 + an 2a an a}} = {{{{cos a} over {sin a}} + {{sin a} over {cos a}}} over {1 + {{sin 2asin a} over {cos 2acos a}}}})
( = {1 over {sin acos a}}.{{cos acos2a} over {cos 2acos a + sin 2asin a}})
( = {2 over {sin 2a}}.{{cos acos2a} over {cos (2a - a)}} = 2cot 2a)
Sachbaitap.net