27/04/2018, 10:22

Bài 2.6 trang 163 Sách bài tập (SBT) Đại số và giải tích 11

Tính các giới hạn sau : ...

Tính các giới hạn sau :

Tính các giới hạn sau :

a) (mathop {lim }limits_{x o  - 3} {{x + 3} over {{x^2} + 2x - 3}}) ;                            b) (mathop {lim }limits_{x o 0} {{{{left( {1 + x} ight)}^3} - 1} over x}) ;

c) (mathop {lim }limits_{x o  + infty } {{x - 1} over {{x^2} - 1}}) ;                                d) (mathop {lim }limits_{x o 5} {{x - 5} over {sqrt x  - sqrt 5 }}) ;

e) (mathop {lim }limits_{x o  + infty }  = {{x - 5} over {sqrt x  + sqrt 5 }}) ;                      f) (mathop {lim }limits_{x o  - 2} {{sqrt {{x^2} + 5}  - 3} over {x + 2}}) ;

g) (mathop {lim }limits_{x o 1} {{sqrt x  - 1} over {sqrt {x + 3}  - 2}}) ;                               h) (mathop {lim }limits_{x o  + infty } {{1 - 2x + 3{x^3}} over {{x^3} - 9}}) ;

i) (mathop {lim }limits_{x o 0} {1 over {{x^2}}}left( {{1 over {{x^2} + 1}} - 1} ight)) ;                   j) (mathop {lim }limits_{x o  - infty } {{left( {{x^2} - 1} ight){{left( {1 - 2x} ight)}^5}} over {{x^7} + x + 3}}) ;

Giải:

a) (mathop {lim }limits_{x o  - 3} {{x + 3} over {{x^2} + 2x - 3}} = mathop {lim }limits_{x o  - 3} {{x + 3} over {left( {x - 1} ight)left( {x + 3} ight)}} = mathop {lim }limits_{x o  - 3} {1 over {x - 1}} = {{ - 1} over 4})

b) 

(eqalign{
& mathop {lim }limits_{x o 0} {{{{left( {1 + x} ight)}^3} - 1} over x} cr
& = mathop {lim }limits_{x o 0} {{left( {1 + x - 1} ight)left[ {{{left( {1 + x} ight)}^2} + left( {1 + x} ight) + 1} ight]} over x} cr
& = mathop {lim }limits_{x o 0} {{xleft[ {{{left( {1 + x} ight)}^2} + left( {1 + x} ight) + 1} ight]} over x} cr
& = mathop {lim }limits_{x o 0} left[ {{{left( {1 + x} ight)}^2} + left( {1 + x} ight) + 1} ight] = 3 cr} )

c) (mathop {lim }limits_{x o  + infty } {{x - 1} over {{x^2} - 1}} = mathop {lim }limits_{x o  + infty } {{{1 over x} - {1 over {{x^2}}}} over {1 - {1 over {{x^2}}}}} = 0)

d) (mathop {lim }limits_{x o 5} {{x - 5} over {sqrt x  - sqrt 5 }})

(= mathop {lim }limits_{x o 5} {{left( {sqrt x  - sqrt 5 } ight)left( {sqrt x  + sqrt 5 } ight)} over {sqrt x  - sqrt 5 }})

(= mathop {lim }limits_{x o 5} left( {sqrt x  + sqrt 5 } ight) = 2sqrt 5 )

e)

(eqalign{
& mathop {lim }limits_{x o + infty } {{x - 5} over {sqrt x + sqrt 5 }} cr
& = mathop {lim }limits_{x o + infty } {{1 - {5 over x}} over {{1 over {sqrt x }} + {{sqrt 5 } over x}}} = + infty cr} )  

(Vì ({1 over {sqrt x }} + {{sqrt 5 } over x} > 0) với mọi (x > 0) ).

f) 

(eqalign{
& mathop {lim }limits_{x o - 2} {{sqrt {{x^2} + 5} - 3} over {x + 2}} cr
& = mathop {lim }limits_{x o - 2} {{{x^2} + 5 - 9} over {left( {x + 2} ight)left( {sqrt {{x^2} + 5} + 3} ight)}} cr
& = mathop {lim }limits_{x o - 2} {{left( {x - 2} ight)left( {x + 2} ight)} over {left( {x + 2} ight)left( {sqrt {{x^2} + 5} + 3} ight)}} cr
& = mathop {lim }limits_{x o - 2} {{x - 2} over {sqrt {{x^2} + 5} + 3}} = {{ - 2} over 3} cr} )

g) 

(eqalign{
& mathop {lim }limits_{x o 1} {{sqrt x - 1} over {sqrt {x + 3} - 2}} cr
& = mathop {lim }limits_{x o 1} {{left( {sqrt x - 1} ight)left( {sqrt {x + 3} + 2} ight)} over {x + 3 - 4}} cr
& = mathop {lim }limits_{x o 1} {{left( {sqrt {x - 1} } ight)left( {sqrt {x + 3} + 2} ight)} over {x - 1}} cr
& = mathop {lim }limits_{x o 1} {{left( {sqrt x - 1} ight)left( {sqrt {x + 3} + 2} ight)} over {left( {sqrt x - 1} ight)left( {sqrt x + 1} ight)}} cr
& = mathop {lim }limits_{x o 1} {{sqrt {x + 3} + 2} over {sqrt x + 1}} = 2 cr} )

h) (mathop {lim }limits_{x o  + infty } {{1 - 2x + 3{x^3}} over {{x^3} - 9}} = mathop {lim }limits_{x o  + infty } {{{1 over {{x^3}}} - {2 over {{x^2}}} + 3} over {1 - {9 over {{x^3}}}}} = 3)

i) 

(eqalign{
& mathop {lim }limits_{x o 0} {1 over {{x^2}}}left( {{1 over {{x^2} + 1}} - 1} ight) cr
& = mathop {lim }limits_{x o 0} {1 over {{x^2}}}.left( {{{ - {x^2}} over {{x^2} + 1}}} ight) cr
& = mathop {lim }limits_{x o 0} {{ - 1} over {{x^2} + 1}} = - 1 cr} )

j)

(eqalign{
& mathop {lim }limits_{x o - infty } {{left( {{x^2} - 1} ight){{left( {1 - 2x} ight)}^5}} over {{x^7} + x + 3}} cr
& = mathop {lim }limits_{x o - infty } {{{x^2}left( {1 - {1 over {{x^2}}}} ight).{x^5}{{left( {{1 over x} - 2} ight)}^5}} over {{x^7} + x + 3}} cr
& = mathop {lim }limits_{x o - infty } {{left( {1 - {1 over {{x^2}}}} ight){{left( {{1 over x} - 2} ight)}^5}} over {1 + {1 over {{x^6}}} + {3 over {{x^7}}}}} cr
& = {left( { - 2} ight)^5} = - 32 cr})

0