27/04/2018, 13:56

Bài 2.28 trang 80 Sách bài tập (SBT) Hình học 11

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. ...

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều.

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với . Lấy là mặt phẳng đi qua I và song song với mặt phẳng (SBD).

a) Xác định thiết diện của mặt phẳng  với hình chóp S.ABCD.

b) Tìm diện tích S của thiết diện ở câu a) theo a, b, x. Tìm x để S lớn nhất.

Giải:

a) Trường hợp 1 .

I  thuộc đoạn (AOleft( {0 < x < {a over 2}} ight))

Khi đó I ở vị trí I1

Ta có: (left( alpha   ight)parallel left( {SB{ m{D}}} ight))

( Rightarrow left{ matrix{
left( alpha ight)parallel B{ m{D}} hfill cr
left( alpha ight)parallel SO hfill cr} ight.) 

Vì (left( alpha   ight)parallel BD) nên (left( alpha   ight)) cắt (ABD) theo giao tuyến  M1N1 ( qua I1) song song với BD

Tương tự (left( alpha   ight)parallel SO) nên (left( alpha   ight)) cắt (SOA) theo giao tuyến

S1I1 song song với SO.

Ta có thiết diện trong trường hợp này là tam giác ({S_1}{M_1}{N_1}).

Nhận xét. Dễ thấy rằng ({S_1}{M_1}parallel SB) và ({S_1}{N_1}parallel S{ m{D}}). Lúc đó tam giác ({S_1}{M_1}{N_1}) đều.

Trường hợp 2. I thuộc đoạn (OCleft( {{a over 2} < x < a} ight))

Khi đó I ở vị trí I2. Tương tự như trường hợp 1 ta có thiết diện là tam giác đều ({S_2}{M_2}{N_2}) có ({M_2}{N_2}parallel B{ m{D}}), ({S_2}{M_2}parallel SB), ({S_2}{N_2}parallel S{ m{D}}).

Trường hợp 3. (I equiv O). Thiết diện chính là tam giác đều SBD.

b) Ta lần lượt tìm diện tích thiết diện trong các trường hợp 1,2,3.

Trường hợp 1 . I  thuộc đoạn (AOleft( {0 < x < {a over 2}} ight))

({{{S_{{S_1}{M_1}{N_1}}}} over {{s_{SB{ m{D}}}}}} = {left( {{{{M_1}{N_1}} over {B{ m{D}}}}} ight)^2} = {left( {{{2x} over a}} ight)^2})

({S_{{S_1}{M_1}{N_1}}} = {{4{{ m{x}}^2}} over {{a^2}}}.{S_{SB{ m{D}}}} = {{4{{ m{x}}^2}} over {{a^2}}}.{{{b^2}sqrt 3 } over 4} = {{{b^2}{x^2}sqrt 3 } over {{a^2}}}) 

Trường hợp 2 . I thuộc đoạn (OCleft( {{a over 2} < x < a} ight))

({{{S_{{S_2}{M_2}{N_2}}}} over {{S_{SBD}}}} = {left( {{{{M_2}{N_2}} over {BD}}} ight)^2} = left[ {{{2{{left( {a - x} ight)}^2}} over a}} ight]) 

({S_{{S_2}{M_2}{N_2}}} = {4 over {{a^2}}}{left( {a - x} ight)^2}.{{{b^2}sqrt 3 } over 4} = {{{b^2}sqrt 3 } over {{a^2}}}{left( {a - x} ight)^2})

Trường hợp 3. (I equiv O)  .

({S_{SBD}} = {{{b^2}sqrt 3 } over 4})

Tóm lại

({S_{thiết,diện}} = left{ matrix{
{{{b^2}{x^2}sqrt 3 } over {{a^2}}},,,,,,,,,,,,,,,,nếu,,0 < x < {a over 2} hfill cr
{{{b^2}sqrt 3 } over 4},,,,,,,,,,,,,,,,,,,,nếu,,x = {a over 2} hfill cr
{{{b^2}sqrt 3 } over {{a^2}}}{left( {a - x} ight)^2},,nếu,,{a over 2} < x < a, hfill cr} ight.)

* Đồ thị của hàm số S theo biến x như sau: 

Vậy Sthiết diện lớn nhất  khi và chỉ khi (x = {a over 2}).

Sachbaitap.com

0