Bài 17 trang 11 sgk Toán 8 tập 1, Chứng minh rằng:...
Chứng minh rằng. Bài 17 trang 11 sgk toán 8 tập 1 – Những hằng đẳng thức đáng nhớ. 17. Chứng minh rằng: (10a + 5) 2 = 100a . (a + 1) + 25. Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5. Áp dụng để tính: 25 2 , 35 2 , 65 2 , 75 2 . Bài ...
17. Chứng minh rằng:
(10a + 5)2 = 100a . (a + 1) + 25.
Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5.
Áp dụng để tính: 252, 352, 652, 752.
Bài giải:
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhaame bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
– Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
– Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
– 652 = 4225
– 752 = 5625.