08/05/2018, 17:01

Bài 122 trang 95 SBT Toán 8 Tập 1

Bài 9: Hình chữ nhật : Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC. a. Chứng minh rằng AH = DE b. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK Lời giải: a. Xét ...

Bài 9: Hình chữ nhật

: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC.

a. Chứng minh rằng AH = DE

b. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a. Xét tứ giác ADHE, ta có:

∠A = 90o (gt)

∠(ADH) = 90o (vì HD ⊥ AB)

∠(AEH) = 90o (Vì HE ⊥ AC)

Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông)

Vậy AH = DE (tính chất hình chữ nhật)

b. Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)

⇒ ΔIDB cân tại 1 ⇒ ∠(DIB) = (180o - ∠B )/2 (1)

Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.

⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .

⇒ ΔKHE cân tại K ⇒ ∠(EKH) = (180o - ∠(KHE) )/2 (2)

Tứ giác ADHE là hình chữ nhật nên:

HE // AD hay HE // AB ⇒ ∠B = ∠(KHE) (đồng vị)

Từ (1), (2) và (3) suy ra: ∠(DIB) = ∠(EKH)

Vậy DI // DK (vì có cặp góc đồng vị bằng nhau).

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0