08/05/2018, 17:01

Bài 125 trang 95 SBT Toán 8 Tập 1

Bài 10: Đường thẳng song song với một đường thẳng cho trước : Cho góc vuông xOy, điểm A nằm trên tia Oy, điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào? Lời giải: Vì điểm C đối xứng với điểm A qua điểm B nên BA ...

Bài 10: Đường thẳng song song với một đường thẳng cho trước

: Cho góc vuông xOy, điểm A nằm trên tia Oy, điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào?

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì điểm C đối xứng với điểm A qua điểm B nên BA = BC

Kẻ CH ⊥ Ox

Xét hai tam giác vuông AOB và CHB, ta có:

∠(AOB) = ∠(CHB ) = 90o

BA = BC ( chứng minh trên)

∠(ABO ) = ∠(CBH) ( đối đỉnh)

Suy ra ΔAOB = Δ CHB ( cạnh huyền, góc nhọn)

⇒ CH = AO

Vì A, O cố định nên OA không đổi suy ra CH không đổi

Vì C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng bằng OA.

Khi B trung O thì C trung với điểm K đối xứng với A qua điểm O.

Vậy C chuyển động trên tia Kz // Ox, cách Ox một khoảng không đổi bằng OA.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0