Bài 125 trang 95 SBT Toán 8 Tập 1
Bài 10: Đường thẳng song song với một đường thẳng cho trước : Cho góc vuông xOy, điểm A nằm trên tia Oy, điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào? Lời giải: Vì điểm C đối xứng với điểm A qua điểm B nên BA ...
Bài 10: Đường thẳng song song với một đường thẳng cho trước
: Cho góc vuông xOy, điểm A nằm trên tia Oy, điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào?
Lời giải:
Vì điểm C đối xứng với điểm A qua điểm B nên BA = BC
Kẻ CH ⊥ Ox
Xét hai tam giác vuông AOB và CHB, ta có:
∠(AOB) = ∠(CHB ) = 90o
BA = BC ( chứng minh trên)
∠(ABO ) = ∠(CBH) ( đối đỉnh)
Suy ra ΔAOB = Δ CHB ( cạnh huyền, góc nhọn)
⇒ CH = AO
Vì A, O cố định nên OA không đổi suy ra CH không đổi
Vì C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng bằng OA.
Khi B trung O thì C trung với điểm K đối xứng với A qua điểm O.
Vậy C chuyển động trên tia Kz // Ox, cách Ox một khoảng không đổi bằng OA.
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)