Bài 100 trang 92 SBT Toán 8 Tập 1
Bài 8: Đối xứng tâm : Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng cắt đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành. Lời giải: * Xét ΔOAE ...
Bài 8: Đối xứng tâm
: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng cắt đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
Lời giải:
* Xét ΔOAE và ΔOCF, ta có:
OA = OC (tính chất hình bình hành)
∠(AOE)= ∠(COF)(đối đỉnh)
∠(OAE)= ∠(OCF)(so le trong)
Do đó: ΔOAE = ΔOCF (g.c.g)
⇒ OE = OF (l)
* Xét ΔOAG và ΔOCH, ta có:
OA = OC (tính chất hình bình hành)
∠(AOG) = ∠(COH)(dối đỉnh)
∠(OAG) = ∠(OCH)(so le trong).
Do đó: ΔOAG = ΔOCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)