08/05/2018, 17:00

Bài 96 trang 92 SBT Toán 8 Tập 1

Bài 8: Đối xứng tâm : Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O. Lời giải: Xét ΔOED và ΔOFB, ta có: ∠(EOD)= ...

Bài 8: Đối xứng tâm

: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ΔOED và ΔOFB, ta có:

∠(EOD)= ∠(FOB)(đối đỉnh)

OD = OB (tính chất hình bình hành)

∠(ODE)= ∠(OBF)(so le trong)

Do đó: ΔOED = ΔOFB (g.c.g)

⇒ OE = OF

Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0