27/04/2018, 11:32

Bài 1.38 trang 34 Sách bài tập (SBT) Giải tích 12

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ...

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho

Cho hàm số : (y = {1 over 4}{x^3} - {3 over 2}{x^2} + 5)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho

b) Tìm các giá trị của tham số m để phương trình  x3 – 6x2 + m = 0  có 3 nghiệm thực phân biệt.

Hướng dẫn làm bài:

a) Tập xác định: D = R; (y' = {3 over 4}{x^2} - 3x)     

(y' = 0 Leftrightarrow left[ matrix{
x = 0 hfill cr
x = 4 hfill cr} ight.)

Hàm số đồng biến trên mỗi khoảng (( - infty ;0),(4; + infty )).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đật cực đại tại x = 0, y = 5. Hàm số đạt cực tiểu tại x = 4, yCT = -3.

 

Đồ thị đi qua A(-2; -3); B(6; 5).

 

b)  

(eqalign{
& {x^3} - 6{x^2} + m = 0 cr 
& Leftrightarrow  {x^3} - 6{x^2} = - m cr} )             (1)

( Leftrightarrow  {1 over 4}{x^3} - {3 over 2}{x^2} + 5 = 5 - {m over 4})

Số nghiệm thực phân biệt của phương trình (1) bằng số giao điểm phân biệt của đồ thị (C) và đường thẳng (d): (y = 5 - {m over 4})

Suy ra (1) có 3 nghiệm thực phân biệt khi và chỉ khi: ( - 3 < 5 - {m over 4} < 5 Leftrightarrow  0 < m < 32)

Sachbaitap.com

0