8 cách phân tích đa thức thành nhân tử cực hay
8 cách phân tích đa thức thành nhân tử cực hay Toán lớp 8: Phân tích đa thức thành nhân tử Phân tích đa thức thành nhân tử 8 cách phân tích đa thức thành nhân tử mà chúng ta có thể gặp. Tuy nhiên được ...
8 cách phân tích đa thức thành nhân tử cực hay
Phân tích đa thức thành nhân tử
8 cách phân tích đa thức thành nhân tử mà chúng ta có thể gặp. Tuy nhiên được áp dụng nhiều hơn cả là 5 phương pháp phân tích đa thức thành nhân tử đầu tiên. Chúc các bạn sử dụng thành thạo những phương pháp phân tích thành nhân tử mà thầy trình bày ở trên.
Đề cương ôn tập học kì 2 môn Toán lớp 8 - Đại số và Hình học
Đề thi học kì 2 môn Toán lớp 8 Phòng GD&ĐT Thủ Đức, TP HCM năm học 2016 - 2017
Đề thi học sinh giỏi môn Toán lớp 8 Phòng GD&ĐT Phù Ninh, Phú Thọ năm học 2016 - 2017
1. Phương pháp đặt nhân tử chung
Trong biểu thức bài toán cho, chúng ta cần lựa chọn ra những ẩn số hay hằng của một số biểu thức nhất định là ước chung và chọn chúng làm nhân tử. Để dễ hiểu chúng ta có như sau:
A.B + C.B - B.Q=B.(A + C-Q)
Mấu chốt của vấn đề là làm thế nào chúng ta phải đưa được biểu thức đã cho về dạng tích của nhiều đa thức. Bởi nhiều bạn mới học, cũng bảo đặt nhân tử chung nhưng khi xem kết quả thì chưa tồn tại dạng tích mà vẫn ở dạng tổng.
Ví dụ: Phân tích đa thức sau thành nhân tử bằng phương pháp đặt nhân tử chung.
2. Phương pháp dùng hằng đẳng thức
Ở phương pháp này các bạn cần vận dụng linh hoạt 7 hằng đẳng thức đáng nhớ vào việc phân tích đa thức thành nhân tử. Vận dụng các hằng đẳng thức để biến đổi đa thức thành tích các nhân tử hoặc luỹ thừa của một đa thức đơn giản.
Ví dụ: Phân tích đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức.
3. Phương pháp nhóm nhiều hạng tử
Dùng các tính chất giao hoán, kết hợp của phép cộng các đa thức, ta kếp hợp những hạng tử của đa thức thành từng nhóm thích hợp rồi dùng các phương pháp khác phân tích nhân tử theo từng nhóm rồi phân tích chung đối với các nhóm. Thường sau khi nhóm chúng ta sẽ sử dụng phương pháp đặt nhân tử chung hoặc dùng hằng đắng thức để làm tiếp.
Ví dụ: Phân tích đa thức sau thành nhân tử bằng phương pháp nhóm nhiều hạng tử.
4. Phương pháp tách
Ta có thể tách 1 hạng tử nào đó của đa thức thành hai hay nhiều hạng tử thích hợp để làm xuất hiện những nhóm hạng tử mà ta có thể dùng các phương pháp khác để phân tích được
Ví dụ: Phân tích đa thức sau thành nhân tử bằng phương pháp tách hạng tử.
5. Phương pháp thêm bớt cùng một hạng tử
Ta có thể thêm bớt 1 hạng tử nào đó của đa thức để làm xuất hiện những nhóm hạng tử mà ta có thể dùng các phương pháp khác để phân tích được.
Ví dụ
6. Phương pháp đặt biến phụ
Trong một số trường hợp, để việc phân tích đa thức thành nhân tử được thuận lợi, ta phải đặt biến phụ thích hợp.
7. Phương pháp giảm dần số mũ của lũy thừa
8. Phương pháp hệ số bất định