Nguyên lý của việc VIẾT số
0 Một số được viết bằng cách đặt kề nhau các ký hiệu , được chọn trong một tập hợp xác định. Mỗi ký hiệu trong một số được gọi là số mã (số hạng, digit). Thí ...
Một số được viết bằng cách đặt kề nhau các ký hiệu, được chọn trong một tập hợp xác định. Mỗi ký hiệu trong một số được gọi là số mã (số hạng, digit).
Thí dụ, trong hệ thống thập phân (cơ số 10) tập hợp này gồm 10 ký hiệu rất quen thuộc, đó là các con số từ 0 đến 9:
S10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Khi một số gồm nhiều số mã được viết, giá trị của các số mã tùy thuộc vị trí của nó trong số đó. Giá trị này được gọi là trọng số của số mã.
Thí dụ số 1998 trong hệ thập phân có giá trị xác định bởi triển khai theo đa thức của 10:
199810 = 1x103 + 9x102 +9x101 + 9x100 = 1000 + 900 + 90 + 8
Trong triển khai, số mũ của đa thức chỉ vị trí của một ký hiệu trong một số với qui ước vị trí của hàng đơn vị là 0, các vị trí liên tiếp về phía trái là 1, 2, 3, ... . Nếu có phần lẻ, vị trí đầu tiên sau dấu phẩy là -1, các vị trí liên tiếp về phía phải là -2, -3, ... .
Ta thấy, số 9 đầu tiên (sau số 1) có trọng số là 900 trong khi số 9 thứ hai chỉ là 90.
Có thể nhận xét là với 2 ký hiệu giống nhau trong hệ 10, ký hiệu đứng trước có trọng số gấp 10 lần ký hiệu đứng ngay sau nó. Điều này hoàn toàn đúng cho các hệ khác, thí dụ, đối với hệ nhị phân ( cơ số 2) thì tỉ lệ này là 2.
Tổng quát, một hệ thống số được gọi là hệ b sẽ gồm b ký hiệu trong một tập hợp:
Sb = {S0, S1, S2, . . ., Sb-1}
Một số N được viết:
N = (anan-1an-2. . .ai . . .a0 , a-1a-2 . . .a-m)b với ai ∈ Sb
Sẽ có giá trị:
N = an bn + an-1bn-1 +an-2bn-2 + . . .+ aibi +. . . + a0b0 + a-1 b-1 + a-2 b-2 +. . .+ a-mb-m.
=
aibi chính là trọng số của một ký hiệu trong Sb ở vị trí thứ i.