Liên hệ giữa dây và khoảng cách từ tâm đến dây
A. Phương pháp giải Định lý: Trong một đường tròn: - Hai dây cung bằng nhau thì cách đều tâm, - Hai dây cung cách đều tâm thì bằng nhau. - Dây cung nào lớn hơn thì gần tâm hơn. - Dây cung gần tâm hơn thì lớn hơn. B. Bài tập tự luận Bài 1: Cho hình vẽ ...
A. Phương pháp giải
Định lý: Trong một đường tròn:
- Hai dây cung bằng nhau thì cách đều tâm,
- Hai dây cung cách đều tâm thì bằng nhau.
- Dây cung nào lớn hơn thì gần tâm hơn.
- Dây cung gần tâm hơn thì lớn hơn.
B. Bài tập tự luận
Bài 1: Cho hình vẽ sau, trong đó MN=PQ. Chứng minh rằng:
a, AE=AF
b, AN=AQ.
Hướng dẫn giải
Vì MN=PQ nên OE=OF( theo định lý liên hệ giữa dây và khoảng cách từ tâm đến dây)
Xét tam giác vuông AOE và tam giác vuông AOF có:
OE=OF ( chứng minh trên)
AO: chung
Suy ra ΔAOE = ΔAOF ( cạnh huyền-cạnh góc vuông)
Suy ra AE=AF( 2 cạnh tương ứng)(1)
Vì OE⊥MN nên ME=NE (tính chất đường kính và dây cung)
Vì OF⊥PQ nên PF=QF (tính chất đường kính và dây cung)
Mà MN=PQ
Suy ra ME=NE=PF=QF.(2)
Từ (1) và (2) suy ra AN=AQ.
Bài 2: Cho đường tròn(O), dây AB và dây CD, AB < CD. Giao điểm K của các đường thẳng AB, CD nằm ngoài đường tròn. Đường tròn (O;OK) cắt KA và KC tại M và N.
Chứng minh KM < KN.
Hướng dẫn giải
Kẻ OI ⊥AB, OE ⊥ CD.
Xét đường tròn (O;OA) có: AB và CD là dây cung, AB < CD. Suy ra OI > OE.
Xét đường tròn (O;OK) có KN và KM là dây cung và OI > OE. Suy ra KM < KN.
Bài 3: Cho đường tròn (O), hai dây AB, CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn. Chứng minh rằng:
a, IO là tia phân giác của một trong hai góc tạo bởi hai dây AB và CD.
b, Điểm I chia AB, CD thành các đoạn thẳng bằng nhau đôi một.
Hướng dẫn giải
a, Kẻ OH ⊥ AB; OK ⊥ CD.
Vì CD=AB nên OK=OH.
Xét tam giác vuông IKO và tam giac vuông IOH ta có:
OK=OH
IO: chung
Suy ra Δ IKO = ΔIOH ( cạnh huyền-cạnh góc vuông)
=> ∠KIO = ∠OIH ( 2 góc tương ứng)
Suy ra OI là tia phân giác của góc BID
b, Theo câu a, Δ IKO = ΔIOH ( cạnh huyền-cạnh góc vuông)
=> IH=IK.
Xét đường tròn tâm (O), ta có: OK ⊥ CD nên suy ra CK=KD( định lý về đường kính và dây) (1)
Xét đường tròn tâm (O), ta có: OH ⊥ AB nên suy ra AH=HB (định lý về đường kính và dây) (2)
Từ (1) và (2) ta có: CK=AH
Mặt khác, IH=IK
Suy ra AI=CI
Vì CD=AB, mà AI=CI(chứng minh trên) nên ta suy ra ID=IB.
Bài 4: Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM=BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng:
a, OC là tia phân giác của góc AOB.
b, OC vuông góc AB.
Hướng dẫn giải
Xét đường tròn tâm (O) có AM=BN
Từ đó ta suy ra OE=OD (tính chất quan hệ giữa đường kính và dây cung)
Xét tam giác vuông AOD và tam giác vuông BOE có:
OA=OB(cùng bằng bán kính)
OE=OD(chứng minh trên)
=> ΔAOD = ΔBOE (cạnh huyền-cạnh góc vuông)
=> ∠O1 = ∠O4 (2 góc tương ứng)(1)
Tương tự ta có: ∠O2 = ∠O3 (2)
Ta có: ∠AOC = ∠O1 + ∠O2
∠BOC = ∠O3 + ∠O4
Từ (1) và (2) ta suy ra ∠AOC= ∠BOC
Suy ra OC là tia phân giác của góc AOB.
Xét tam giác OBF và tam giác OAF có:
∠AOC = ∠BOC (chứng minh trên)
OA=OB
OF: chung
Suy ra ΔOBF = ΔOAF (c-g-c)
=> BF=AF( 2 cạnh tương ứng)
=> OC ⊥ AB
Tham khảo thêm các Chuyên đề Toán lớp 9