15/01/2018, 14:59

Giải bài tập trang 12 SGK Toán 8 tập 1: Hằng đẳng thức đáng nhớ

Giải bài tập trang 12 SGK Toán 8 tập 1: Hằng đẳng thức đáng nhớ Giải bài tập môn Toán lớp 8 Giải bài tập T oán 8 tập 1 : Hằng đẳng thức đáng nhớ với lời giải chi tiết, rõ ràng theo khung chương ...

Giải bài tập trang 12 SGK Toán 8 tập 1: Hằng đẳng thức đáng nhớ

Giải bài tập Toán 8 tập 1: Hằng đẳng thức đáng nhớ

 với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8, các bài giải tương ứng với từng bài học trong sách giúp cho các em học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.

Giải bài tập trang 5, 6 SGK Toán lớp 8 tập 1: Nhân đơn thức với đa thức

Giải bài tập trang 8, 9 SGK Toán lớp 8 tập 1: Nhân đa thức với đa thức

Giải bài tập trang 11 SGK Toán 8 tập 1: Hằng đẳng thức đáng nhớ

A. Một số kiến thức cơ bản về hằng đẳng thức đáng nhớ:

Bình phương của một tổng: (A + B )2 = A2 + 2AB + B2

Bình phương của một hiệu: (A – B )2 = A2 – 2AB + B2

Hiệu của hai bình phương: A2 – B2 = (A +B ) (A-B)

B. Lời giải hay bài tập Toán 8 hằng đẳng thức trong SGK trang 11,12 Toán 8 tập 1

Bài 1: (Bài tập SGK trang 12 toán lớp 8)

Tính diện tích phần hình còn lại mà không cần đo.

Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?

Đáp án và hướng dẫn giải bài:

Diện tích của miếng tôn là (a + b)2

Diện tích của miếng tôn phải cắt là (a – b)2.

Phần diện tích còn lại là (a + b)2 – (a – b)2.

Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)

= a2 + 2ab + b2 – a2 + 2ab – b2

= 4ab

Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.

Bài 2: (Bài tập SGK trang 12 toán lớp 8)

Nhận xét sự đúng, sai của kết quả sau:

x2 + 2xy + 4y2 = (x + 2y)2

Đáp án và hướng dẫn giải:

Nhận xét sự đúng, sai:

Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2

= x2 + 4xy + 4y2

Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.

Bài 3: (Bài tập SGK trang 12 toán lớp 8)

Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) 9x2 – 6x + 1;

b) (2x + 3y)2 + 2.(2x + 3y) + 1.

Hãy nêu một đề bài tương tự.

Đáp án và hướng dẫn giải:

a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2

Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2

b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12

= [(2x + 3y) + 1]2

= (2x + 3y + 1)2

Đề bài tương tự. Chẳng hạn:

1 + 2(x + 2y) + (x + 2y)2

4x2 – 12x + 9…

16x2 y4 – 8xy2 +1

Bài 4: (Bài tập SGK trang 12 toán lớp 8)

Tính nhanh:

a) 1012;                                         b) 1992;                             c) 47.53.

Đáp án và hướng dẫn giải:

a) 1012 = (100 + 1)2 = 1002 + 2 . 100 + 1 = 10201

b) 1992= (200 – 1)2 = 2002 – 2 . 200 + 1 = 39601

c) 47.53 = (50 – 3)(50 + 3) = 502 – 32 = 2500 – 9 = 2491.

Bài 5: (Bài tập SGK trang 12 toán lớp 8)

Chứng minh rằng:

(a + b)2 = (a – b)2 + 4ab;

(a – b)2 = (a + b)2 – 4ab.

Áp dụng:

a) Tính (a – b)2, biết a + b = 7 và a . b = 12.

b) Tính (a + b)2, biết a – b = 20 và a . b = 3.

Đáp án và hướng dẫn giải:

a) (a + b)2 = (a – b)2 + 4ab

Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

Bài 6: (Bài tập SGK trang 12 toán lớp 8)

Tính giá trị của biểu thức 49x2 – 70x + 25 trong mỗi trường hợp sau:

a) x = 5;                                             b) x = 1/7.

Đáp án và hướng dẫn giải:

49x2 – 70x + 25 = (7x)2 – 2 . 7x . 5 + 52 = (7x – 5)2

a) Với x = 5: (7 . 5 – 5)2 = (35 – 5)2 = 302 = 900

b) Với x = 1/7: (7 . 1/7 – 5)2 = (1 – 5)2 = (-4)2 = 16

Bài 7: (Bài tập SGK trang 12 toán lớp 8)

Tính:

a) (a + b + c)2;                                         b) (a + b – c)2;

c) (a – b – c)2

Bài giải:

a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2

= a2+ 2ab + b2 + 2ac + 2bc + c2

= a2 + b2 + c2 + 2ab + 2bc + 2ac.

b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 – 2(a + b)c + c2

= a2 + 2ab + b2 – 2ac – 2bc + c2

= a2 + b2 + c2 + 2ab – 2bc – 2ac.

c) (a – b –c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2

= a2 – 2ab + b2 – 2ac + 2bc + c2

= a2 + b2 + c2 – 2ab + 2bc – 2ac.

0