Giải bài tập Toán 11 bài 2: Dãy số
Giải bài tập môn Toán lớp 11 Giải bài tập Toán 11 Giải tích: Dãy số VnDoc xin giới thiệu tới bạn đọc tài liệu Giải ...
Giải bài tập Toán 11 Giải tích: Dãy số
VnDoc xin giới thiệu tới bạn đọc tài liệu Giải bài tập Toán 11 bài 2: Dãy số, nội dung tài liệu bao gồm 5 bài tập trang 92 SGK kèm theo lời giải chi tiết sẽ là nguồn thông tin hữu ích để phục vụ các bạn học sinh có kết quả cao hơn trong học tập. Mời thầy cô cùng các bạn học sinh tham khảo.
Giải bài tập Toán 11 Dãy số
Bài 1 (trang 92 SGK Đại số 11): Viết năm số hạng đầu của dãy số có số hạng tổng quát un cho bởi công thức:
Lời giải:
Bài 2 (trang 92 SGK Đại số 11): Cho dãy số (un), biết u1 = - 1, un+ 1 = un + 3 với n ≥ 1.
a. Viết năm số hạng đầu của dãy số;
b. Chứng minh bằng phương pháp quy nạp: un = 3n – 4
Lời giải:
a. u1 = - 1, un+ 1 = un + 3 với n > 1
u1 = - 1 ; u2 = u1 + 3 = - 1 + 3 = 2
Ta có: u3 = u2 + 3 = 2 + 3 = 5
u4 = u3 + 3 = 5 + 3 = 8
u5 = u4 + 3 = 8 + 3 = 11
b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)
Khi n = 1 thì u1 = 3.1 - 4 = - 1, vậy (1) đúng với n = 1.
Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4 (2)
Ta phải chứng minh (1) đúng với n = k + 1, tức là uk+1 = 3(k + 1) – 4 = 3k – 1
Theo giả thiết: uk+1 = uk + 3
(2) uk+1 = 3k – 4 + 3 = 3 ( k + 1) – 4
(1) đúng với n = k + 1
Vậy (1) đúng với n ∈ N*
Bài 3 (trang 92 SGK Đại số 11): Dãy số (un) cho bởi u1 = 3, un+1 = √(1+un2) , n > 1
a. Viết năm số hạng đầu của dãy số.
b. Dự đoán công thức số hạng tổng quát un và chứng minh công thức đó bằng phương pháp quy nạp.
Lời giải:
a. Năm số hạng đầu của dãy số
b. Dự đoán công thức số hạng tổng quát của dãy số:
un =√(n+8) (1)
Rõ ràng (1) đúng với n = 1
Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)
Vậy (1) đúng với n = k + 1, do đó đúng với mọi n ∈ N*.
Bài 4 (trang 92 SGK Đại số 11): Xét tính tăng, giảm của các dãy số (un), biết:
Lời giải:
∀n ∈ N*, n ≥ 1 => un+1 – un > 0
=> un+1 > un => (un) là dãy số tăng
c. un = (-1)n(2n + 1)
Nhận xét:
{(-1)n > 0 nếu n chẵn {un > 0 nếu n chẵn
{(-1)n < 0 nếu n lẽ {un < 0 nếu n lẻ
Và 2n + 1 > 0 ∀ n ∈ N*
=>u1 < 0, u2 > 0, u3 < 0, u4> 0,…
=>u1 < u2, u2 > u3, u3 < u4,…
=> dãy số (un) không tăng, không giảm.
Bài 5 (trang 92 SGK Đại số 11): Trong các dãy số (un) sau, dãy nào bị chặn dưới, bị chặn trên và bị chặn?
Lời giải:
a. un = 2n2 – 1
Ta có: n ≥ 1
<=> n2 ≥ 1 <=> 2n2 ≥ 2 <=> 2n2 -1≥1
Hay un ≤ 1
=> dãy (un) bị chặn dưới ∀n ∈ N*.
Nhưng (un) không bị chặn trên vì không có số M nào thỏa:
un = 2n2 – 1 ≤ M ∀n ∈N*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
Vậy dãy số vừa bị chặn dưới vừa bị chặn trên, do đó bị chặn.
d. un = sin n + cos n
Vậy dãy số (un) bị chặn n ∈ N*
------------------------------------
Trên đây VnDoc.com đã giới thiệu tới bạn đọc tài liệu: Giải bài tập Toán 11 bài 2: Dãy số. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Hóa học lớp 10, Giải bài tập Hóa học lớp 11, Hóa học lớp 12, Thi thpt Quốc gia môn Văn, Thi thpt Quốc gia môn Lịch sử, Thi thpt Quốc gia môn Địa lý, Thi thpt Quốc gia môn Toán, đề thi học kì 1 lớp 11, đề thi học kì 2 lớp 11 mà VnDoc tổng hợp và đăng tải.