03/12/2018, 22:43

Đề thi toán học kì 1 lớp 8 – Tìm điều kiện của tam giác để tứ giác là hình vuông

Đề thi gồm 2 phần trắc nghiệm và tự luận của trường VINSCHOOL tổ chức ra đề. ĐỀ KIỂM TRA HỌC KÌ I MÔN TOÁN LỚP 8 Năm học 2018 – 2019 Thời gian: 90 phút Câu 1 : Chọn chữ cái trước đáp án đúng. 1. Đa thức 12x – 36 – x 2 bằng: A) –(x + 6) 2 B) (-x – 6) 2 ...

Đề thi gồm 2 phần trắc nghiệm và tự luận của trường VINSCHOOL  tổ chức ra đề.

ĐỀ KIỂM TRA HỌC KÌ I MÔN TOÁN LỚP 8

Năm học 2018 – 2019

Thời gian: 90 phút

Câu 1: Chọn chữ cái trước đáp án đúng.

1. Đa thức 12x – 36 – xbằng:

A) –(x + 6)2                  B) (-x – 6)2

C) (-x + 6)2                  D) –(x – 6)2

2. Kết quả phép cộng (3x – 1)/(3x – 3) + (-2)/(3x – 3) là

A) (3x + 1)/(3x – 3)        B)  (x + 1)/(x – 3)        C) 1                    D) (3x – 5)/[3(3x – 3)]

3. Kết quả rút gọn biểu thức (x – 2y)(x2 + 2xy + 4y2) – (x + 2y)(x2 – 2xy + 4y2) là:

A)  -16y3                B) -4y3            C) 16y3                D) -12y3

4. Số dư khi chia đa thức 3x4 – 2x3 + x2 – 2x + 2 cho đa thức x – 2 là:

A)  50                         B) 34                    C) 32                    D) 30

5. Hình vuông có độ dài đường chéo là 6cm. Độ dài cạnh hình vuông đó là:

A) √18 cm                   B) 18cm               C) 3cm                 D) 4cm

6. Một hình chữ nhật có diện tích . Nếu tăng chiều dài lên hai lần, chiều rộng lên ba lần thì diện tích của hình chữ nhật mới là:

A) 30m2                     B) 45 m2          C) 90 m2           D) 75 m2

7. Cho hình thang cân ABCD (AB // CD) có góc A = 1350  thì góc C bằng:

A) 350                        B) 450 C) 550                   D) Không tính được

8. Tứ giác có các đỉnh là trung điểm các cạnh của một tứ giác có hai đường chéo bằng nhau là:

A)  Hình thang cân        B) Hình chữ nhật           C) Hình thoi                   D) Hình vuông

Câu 2: Phân tích đa thức sau thành nhân tử:

a)   6xy + 12x – 4y – 8                      b) x3 + 2x2 – x – 2

Câu 3:

a)     Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào giá trị của biến

(x – 2)2 – (x – 1)(x + 1) + 4(x + 2)

b)    Tìm x , biết: (2 – x) (2 + x) = 3

Câu 4: Thực hiện phép tính:

a) [(x + 2)/(x – 3)] – [(x2 + 6)/(x2 – 3x)

b) [(4x – 4)/(x2 – 4x + 4)] : [(x2 – 1)/(2 – x)2] 

Câu 5: Cho tam giác ABC có AD là phân giác của góc BAC (A ∈ BC ). Từ D kẻ các đường thẳng song song với AB và AC, chúng cắt AC, AB tại E và F.

a)     Chứng minh: Tứ giác AEDF là hình thoi.

b)    Trên tia AB lấy điểm G sao cho F là trung điểm AG. Chứng minh: Tứ giác EFGD là hình bình hành.

c)     Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD và EF. Chứng minh: G đối xứng với K qua O.

d)    Tìm điều kiện của tam giác ABC để tứ giác ADGI là hình vuông.

Câu 6: Tính giá trị biểu thức: [1 – 1/22] [1 – 1/32] [1 – 1/42] … [1 – 1/20172]

0