Câu 9.3 trang 11 Sách bài tập (SBT) Toán 8 tập 1
Tìm x ...
Tìm x
Tìm (x,) biết
a. ({x^2} - 2x - 3 = 0)
b. (2{x^2} + 5x - 3 = 0)
Giải:
a. ({x^2} - 2x - 3 = 0)
(eqalign{ & Rightarrow {x^2} - 2x + 1 - 4 = 0 Rightarrow {left( {x - 1} ight)^2} - {2^2} = 0 cr & Rightarrow left( {x - 1 + 2} ight)left( {x - 1 - 2} ight) = 0 Rightarrow left( {x + 1} ight)left( {x - 3} ight) cr} )
( Rightarrow x + 1 = 0) hoặc (x - 3 = 0)
(eqalign{ & x + 1 = 0 Rightarrow x = - 1 cr & x - 3 = 0 Rightarrow x = 3 cr} )
Vậy (x = - 1)và (x = 3)
b. (2{x^2} + 5x - 3 = 0)
(eqalign{ & Rightarrow 2{x^2} + 6x - x - 3 = 0 Rightarrow 2xleft( {x + 3} ight) - left( {x + 3} ight) = 0 cr & Rightarrow left( {x + 3} ight)left( {2x - 1} ight) = 0 cr} ) ( Rightarrow x + 3 = 0) hoặc (2x - 1 = 0)
(eqalign{ & x + 3 = 0 Rightarrow x = - 3 cr & 2x - 1 = 0 Rightarrow x = {1 over 2} cr} )
Vậy (x = - 3) hoặc (x = {1 over 2})