13/01/2018, 07:43

Câu 7 trang 46 SGK Giải tích 12

Câu 7 trang 46 SGK Giải tích 12 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: ...

Câu 7 trang 46 SGK Giải tích 12

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

Bài 7.

a) Khảo sát sự biến thiên và vẽ đồ thị ((C)) của hàm số:

(y = x^3+ 3x^2+ 1)

b) Dựa vào đồ thị ((C)), biện luận số nghiệm của phương trình sau theo m

 ({x^3} + 3{x^2} + 1 = {m over 2})

c) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị ((C))

Trả lời:

a) (y = x^3+ 3x^2+ 1)

Tập xác định: (D =mathbb R)

* Sự biến thiên:

(y’= 3x^2+ 6x = 3x(x+ 2))

(y’=0  ⇔ x = 0, x = -2).

- Hàm số đồng biến trên khoảng ((-infty;-2)) và ((0;+infty)), nghịch biến trên khoảng ((-2;0))

- Cực trị:

    Hàm số đạt cực đại tại (x=-2); (y_{CĐ}=5)

    Hàm số đạt cực tiểu tại (x=0); (y_{CT}=1).

- Giới hạn:

    (eqalign{
& mathop {lim }limits_{x o - infty } y = - infty cr
& mathop {lim }limits_{x o + infty } y = + infty cr} )

- Bảng biến thiên:

Đồ thị:

Đồ thị hàm số giao (Oy) tại ((0;1))

Đồ thị hàm số nhận (I(-1;3)) làm tâm đối xứng.

b) Số nghiệm của phương trình ({x^3} + 3{x^2} + 1 = {m over 2}) chính là số giao điểm của ((C)) và đường thẳng ((d)): (y = {m over 2}) 

Từ đồ thị ta thấy:

- Với ({m over 2} < 1 Leftrightarrow m < 2) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với ({m over 2} = 1  ⇔ m = 2): (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm

- Với (1 < {m over 2} < 5 ⇔ 2<m<10), phương trình có 3 nghiệm.

- Với  ({m over 2} = 5 Leftrightarrow m = 10): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với ({m over 2} > 5 Leftrightarrow m > 10) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại ((-2, 5)), điểm cực tiểu ((0, 1)). 

Đường thẳng đi qua hai  điểm này có phương trình là: ({{y - 1} over 4} = {x over { - 2}} Leftrightarrow y =  - 2x + 1)

soanbailop6.com

0