27/04/2018, 10:19

Câu 6 trang 156 Sách bài tập (SBT) Toán 8 tập 1

Vẽ hình và tính số đường chéo của ngũ giác, lục giác ...

Vẽ hình và tính số đường chéo của ngũ giác, lục giác

a. Vẽ hình và tính số đường chéo của ngũ giác, lục giác

b. Chứng minh rằng hình n – giác có tất cả (({{nleft( {n - 3} ight)} over 2})  đường chéo.

Giải:                                                      

a. Từ mỗi đỉnh của ngũ giác vẽ được hai đường chéo. Ngũ giác có 5 đỉnh ta kẻ được 5.2 = 10 đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy ngũ giác có tất cả 5 đường chéo.

Từ mối đỉnh của lục giác vẽ được 3 đường chéo. Lục giác có 6 đỉnh ta kẻ được 6.3 = 18 đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy lục giác có tất cả là 9 đường chéo.

b. Từ mỗi đỉnh của n – giác nối với các đỉnh còn lại ta được n – 1 đoạn thẳng , trong đó có hai đoạn thẳng là cạnh của hình n – giác (hai đoạn thẳng nối với hai đỉnh kề nhau). Vậy qua mỗi đỉnh của n – giác vẽ được n – 3 đường chéo. Hình n – giác có n đỉnh kẻ được n(n – 3 ) đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy hình n – giác có tất cả  ({{nleft( {n - 3} ight)} over 2}) đường chéo.

Sachbaitap.com

0