27/04/2018, 10:18

Câu 163 trang 100 Sách bài tập (SBT) Toán 8 tập 1

Tứ giác DEBF là hình gì ? Vì sao ? ...

Tứ giác DEBF là hình gì ? Vì sao ?

Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD.

a. Tứ giác DEBF là hình gì ? Vì sao ?

b. Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm.

c. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành.

Giải:                                                                   

a. Xét tứ giác DEBF: AB // CD (gt) hay DF // EB

EB = ({1 over 2})AB (gt)

DF = ({1 over 2})CD (gt)

Suy ra: EB = DF

Tứ giác DEBF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

b. Gọi O là giao điểm của AC và BD

OB = OD (tính chất hình bình hành)

Tứ giác DEBF là hình bình hành

nên EF và BD cắt nhau tại trung điểm của mỗi đường

Suy ra: EF đi qua trung điểm O của BD

Vậy AC, BD và EF cắt nhau tại O trung điểm của mỗi đoạn

c. Xét ∆ EOM và ∆ FON:

(widehat {MEO} = widehat {NFO}) (so le trong)

OE = OF (tính chất hình bình hành)

(widehat {MOE} = widehat {NOF})  (đối đỉnh)

Do đó : ∆ EOM = ∆ FON (g.c.g) ⇒ OM = ON

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường )

Sachbaitap.com

0