Câu 59 trang 40 Sách bài tập (SBT) Toán 8 tập 1
Chứng minh đẳng thức : ...
Chứng minh đẳng thức :
Chứng minh đẳng thức :
a. (left( {{{{x^2} - 2x} over {2{x^2} + 8}} - {{2{x^2}} over {8 - 4x + 2{x^2} - {x^3}}}} ight)left( {1 - {1 over x} - {2 over {{x^2}}}} ight) = {{x + 1} over {2x}})
b. (left[ {{2 over {3x}} - {2 over {x + 1}}.left( {{{x + 1} over {3x}} - x - 1} ight)} ight]:{{x - 1} over x} = {{2x} over {x - 1}})
c. (left[ {{2 over {{{left( {x + 1} ight)}^3}}}.left( {{1 over x} + 1} ight) + {1 over {{x^2} + 2x + 1}}.left( {{1 over {{x^2}}} + 1} ight)} ight]:{{x - 1} over {{x^3}}} = {x over {x - 1}})
Giải:
a. Biến đổi vế trái :
(left( {{{{x^2} - 2x} over {2{x^2} + 8}} - {{2{x^2}} over {8 - 4x + 2{x^2} - {x^3}}}} ight)left( {1 - {1 over x} - {2 over {{x^2}}}} ight))
(eqalign{ & = left[ {{{{x^2} - 2x} over {2left( {{x^2} + 4} ight)}} - {{2{x^2}} over {4left( {2 - x} ight) + {x^2}left( {2 - x} ight)}}} ight]{{{x^2} - x - 2} over {{x^2}}} cr & = left[ {{{{x^2} - 2x} over {2left( {{x^2} + 4} ight)}} - {{2{x^2}} over {left( {2 - x} ight)left( {4 + {x^2}} ight)}}} ight]{{{x^2} - x - 2} over {{x^2}}} cr & = {{left( {{x^2} - 2x} ight)left( {2 - x} ight) - 4{x^2}} over {2left( {2 - x} ight)left( {{x^2} + 4} ight)}}.{{{x^2} - x - 2} over {{x^2}}} cr & = {{2{x^2} - {x^3} - 4x + 2{x^2} - 4{x^2}} over {2left( {2 - x} ight)left( {{x^2} + 4} ight)}}.{{{x^2} - 2x + x - 2} over {{x^2}}} cr & = {{ - xleft( {{x^2} + 4} ight)} over {2left( {2 - x} ight)left( {{x^2} + 4} ight)}}.{{xleft( {x - 2} ight) + left( {x - 2} ight)} over {{x^2}}} cr & = {{xleft( {{x^2} + 4} ight)} over {2left( {x - 2} ight)left( {{x^2} + 4} ight)}}.{{left( {x - 2} ight)left( {x + 1} ight)} over {{x^2}}} = {{x + 1} over {2x}} cr} )
Vế trái bằng vế phải, vậy đẳng thức được chứng minh.
b. Biến đổi vế trái:
(eqalign{ & left[ {{2 over {3x}} - {2 over {x + 1}}.left( {{{x + 1} over {3x}} - x - 1} ight)} ight]:{{x - 1} over x} cr & = left[ {{2 over {3x}} - {2 over {x + 1}}.{{x + 1 - 3xleft( {x + 1} ight)} over {3x}}} ight].{x over {x - 1}} cr & = left[ {{2 over {3x}} - {2 over {x + 1}}.{{left( {x + 1} ight)left( {1 - 3x} ight)} over {3x}}} ight].{x over {x - 1}} cr & = left[ {{2 over {3x}} - {{2left( {1 - 3x} ight)} over {3x}}} ight].{x over {x - 1}} = {{2 - 2 + 6x} over {3x}}.{x over {x - 1}} = 2.{x over {x - 1}} = {{2x} over {x - 1}} cr} )
Vế trái bằng vế phải, vậy đẳng thức được chứng minh.
c. Biến đổi vế trái :
(eqalign{ & left[ {{2 over {{{left( {x + 1} ight)}^3}}}.left( {{1 over x} + 1} ight) + {1 over {{x^2} + 2x + 1}}.left( {{1 over {{x^2}}} + 1} ight)} ight]:{{x - 1} over {{x^3}}} cr & = left[ {{2 over {{{left( {x + 1} ight)}^3}}}.{{x + 1} over x} + {1 over {{{left( {x + 1} ight)}^2}}}.{{{x^2} + 1} over {{x^2}}}} ight].{{{x^3}} over {x - 1}} cr & = left[ {{2 over {x{{left( {x + 1} ight)}^2}}} + {{{x^2} + 1} over {{x^2}{{left( {x + 1} ight)}^2}}}} ight].{{{x^3}} over {x - 1}} = {{2x + {x^2} + 1} over {{x^2}{{left( {x + 1} ight)}^2}}}.{{{x^3}} over {x - 1}} cr & = {{{{left( {x + 1} ight)}^2}} over {{x^2}{{left( {x + 1} ight)}^2}}}.{{{x^3}} over {x - 1}} = {x over {x - 1}} cr} )
Vế trái bằng vế phải, vậy đẳng thức được chứng minh.