27/04/2018, 15:54
Câu 27 trang 160 Sách bài tập (SBT) Toán 9 Tập 1
Cho đường tròn (O) và điểm I nằm bên trong đường tròn. Chứng minh rằng dây AB vuông góc với OI tại I ngắn hơn mọi dây khác đi qua I. ...
Cho đường tròn (O) và điểm I nằm bên trong đường tròn. Chứng minh rằng dây AB vuông góc với OI tại I ngắn hơn mọi dây khác đi qua I.
Cho đường tròn (O) và điểm I nằm bên trong đường tròn. Chứng minh rằng dây AB vuông góc với OI tại I ngắn hơn mọi dây khác đi qua I.
Giải:
Gọi CD là dây bất kì đi qua I và CD không vuông góc với OI.
Kẻ OK ⊥ CD
Tam giác OKI vuông tại K nên OI > OK
Suy ra: AB < CD ( dây lớn hơn gần tâm hơn)
Vậy dây AB vuông góc với IO tại I ngắn hơn mọi dây khác đi qua I.
Sachbaitap.com