27/04/2018, 14:44

Câu 23 trang 82 Sách bài tập (SBT) Toán 8 tập 1

Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA=OB, OC=OD. ...

Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA=OB, OC=OD.

Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA=OB, OC=OD.

Giải:

Xét ∆ ADC và ∆ BCD, ta có:

AD = BC (tính chất hình thang cân)

(widehat {ADC} = widehat {BCD})  (gt)

DC cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.g.c)

( Rightarrow {widehat C_1} = {widehat D_1})

Trong ∆ OCD ta có: ({widehat C_1} = {widehat D_1})

⇒ ∆ OCD cân tại O

⇒ OC = OD  (1)

AC = BD ( tính chất hình thang cân)

⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO

Sachbaitap.com

0