biến điệu độ rộng xung pwm:(pluse width modulation)
Như trường hợp của PAM, ta lại bắt đầu với một sóng mang là một chuỗi xung tuần hoàn. Hình 6.23, chỉ một sóng mang chưa biến điệu, một tín hiệu chứa tin s(t) và sóng biến điệu PWM. Độ rộng của mỗi xung biến điệu thay đổi tuỳ theo trị mẫu tức ...
Như trường hợp của PAM, ta lại bắt đầu với một sóng mang là một chuỗi xung tuần hoàn. Hình 6.23, chỉ một sóng mang chưa biến điệu, một tín hiệu chứa tin s(t) và sóng biến điệu PWM. Độ rộng của mỗi xung biến điệu thay đổi tuỳ theo trị mẫu tức thời của s(t). Trị mẫu lớn hơn sẽ làm độ rộng xung biến điệu rộng hơn. Vì độ rộng xung thay đổi, nên năng lượng của sóng cũng thay đổi. Vậy khi biên độ tín hiệu tăng, công suất truyền cũng tăng.
Hình 6.23: Biến điệu PWM
Cũng như trong trường hợp FM, PWM là một phép biến điệu phi tuyến. Xem một thí dụ đơn giản để minh chứng điều đó. Giả sử tín hiệu chứa tin là một hằng, s(t) = 1. Sóng PWM sẽ gần những xung có độ rộng bằng nhau, vì mỗi trị mẫu thì bằng với mỗi trị mẫu khác. Bây giờ nếu ta truyền s(t) = 2 theo PWM, thì ta lại có một chuỗi xung có độ rộng bằng nhau, nhưng độ rộng của chúng lớn hơn khi truyền s(t) = 1. Nguyên lý tuyến tính sẽ cho kết quả là độ rộng xung của trường hợp sau gấp đôi trường hợp trước. Nhưng ở đây không phải như vậy, như hình 6.24.
Hình 6.24: PWM là phép biến điệu phi tuyến.
Nếu ta giả sử tín hiệu s(t) biến đổi chậm ( lấy mẫu với nhịp nhanh hơn so với nhịp Nyquist ) thì các xung lân cận sẽ có độ rộng hầu như bằng nhau. Với giả thiết này, có thể phân giải xấp xĩ cho sóng biến điệu, theo chuỗi Fourier. Mỗi số hạng của chuỗi là một sóng FM, thay vì là một sóng sin thuần tuý.
Ta sẽ trình bày một dạng của khối biến điệu và một dạng của khối hoàn điệu cho PWM. Trong cả hai, ta đều dùng sóng răng cưa để chuyển đổi giữa thời gian và biên độ. Điều này tương tự như cách thức cho FM, ở đó ta thấy rằng cách dễ nhất để biến điệu một tín hiệu là trước tiên đổi nó thành AM. Tín hiệu răng cưa được dùng vẽ ở hình 6.25.
Hình 6.25
Cách xử lý được diễn tả ở hình 6.26.
Hình 6.26a chỉ khối biến điệu và hình 6.26b, chỉ những dạng sóng tiêu biểu.
Hình 6.26: Khối biến điệu PWM.
Trước tiên tín hiệu s(t) được lấy mẫu và giữ để có s1(t).
Tín hiệu răng cưa bị dời xuống 1 đơn vị tạo nên s2(t). Tổng của s1(t) và s2(t) tạo nên s3(t) và vào mạch so sánh. Những khoảng thời gian mà s3(t) dương là những khoảng mà ở đó độ rộng tỷ lệ với trị giá mẫu gốc. Output của mạch so sánh là 1 khi s3(t) dương và là 0khi s3(t) âm. Kết quả là s4(t), là một sóng PWM. Độ rộng xung có thể được hiệu chỉnh bằng cách tăng giảm s(t). Trong hình vẽ, ta giả sử rằng bình thường s(t) nằm giữa 0 và 1.
Sự hoàn điệu được thực hiện bằng cách tích phân sóng PWM trong mỗi khoảng thời gian. Vì chiều cao của xung thì không đổi, tích phân tỷ lệ với độ rộng xung. Nếu output của tích phân được lấy mẫu và giữ tại trị giá cuối của nó, kết quả sẽ là một sóng PAM.