Bài tập trắc nghiệm Hình 11: Vectơ trong không gian (phần 2)
Câu 7: Cho tứ diện ABCD và AB → = a → , AC → = b → , AD → = c → . Gọi M, N, P và Q lần lượt là trung điểm của AB, BC, CD, và DA. a) Vecto MQ → bằng: A. 1/2( c → - a → ) B. 1/2( a → - c ...
Câu 7: Cho tứ diện ABCD và AB→ = a→,AC→ = b→,AD→ = c→. Gọi M, N, P và Q lần lượt là trung điểm của AB, BC, CD, và DA.
a) Vecto MQ→bằng:
A. 1/2(c→ - a→) B. 1/2(a→ - c→)
C. 1/2(c→ + a→) D. 1/4(c→ + a→)
b) Vecto MP→ bằng:
A. 1/2(c→ - a→) B. 1/2(a→ - c→)
C. 1/2(b→ + c→ - a→) D. 1/2(a→ + b→ - c→)
c) Bốn điểm M, N, P, Q cùng thuộc mặt phẳng vì:
A. MP→ = 1/2(AC→ + AD→ - AB→)
B. MP→ = 1/2 (MN→ + MQ→ )
C. MP→ = MB→ + BP→
D. MP→ = MN→ + MQ→
Câu 8: Cho hình chóp tứ giác đều S. ABCD có tất cả các cạnh bằng a.
a) Số đo góc giữa BC→ và SA→ bằng:
A. 300 B. 600
C. 900 D. 1200
b) Gọi M là điểm bất kì trên AC. Góc giữa MS→ và BD→ bằng 900 khi M:
A. Trùng với A
B. Trùng với C
C. Là trung điểm của AC
D. Bất kì vị trí nào trên AC.
Câu 9: 7. Cho tứ diện ABCD, E và F lần lượt là trung điểm của AB và CD, AB = 2a, CD = 2b và EF = 2c. M là một điểm bất kì.
a) MA2 + MB2 bằng:
A. 2ME2 + 2a2 B. 2MF2 + 2a2
C. 2ME2 + 2b2 D. 2MF2 + 2b2
b) MC2 + MD2 bằng:
A. 2ME2 + 2a2 B. 2MF2 + 2a2
C. 2ME2 + 2b2 D. 2MF2 + 2b2
c) Gọi G là trọng tâm của tứ diện ABCD. ME2 + MF2 bằng:
A. 2MG2 + 2a2 B. 2MG2 + 2b2
C. 2MG2 + 2c2 D. 2MG2 + 2(a2 + b2 + c2)
d) MA2 + MB2 + MC2 + MD2 bằng:
A. 4MG2 + 2a2 B. 4MG2 + 2b2
C. 4MG2 + 2c2 D. 4MG2 + 2(a2 + b2 + c2)
Câu 10: Tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và đều có độ dài là l. Gọi M là trung điểm của các cạnh AB. Góc giữa hai vecto OM→ và BC→ bằng:
A. 00 B. 450
C. 900 D. 1200
Câu 11: Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC bằng a√2.
a) Tích vô hướng SA→.AB→ bằng:
b) Tích vô hướng SC→.AB→ bằng:
c) Góc giữa hai đường thẳng AB và SC bằng:
00 B. 1200 C. 600 D. 900
Đáp án và Hướng dẫn giải
7: a - A, b - C, c - D | 8: a - B, b - C | 9: a - A, b - D, c - C | 10 - D | 11: a - C, b - D, c - C |
Câu 7:
b.Loại ngay hai phương án A và B vì MP→ không đồng phẳng có vecto a→ và c→. Phương án đúng là C vì MP→ = MN→ + NP→ = 1/2(b→ + C→- a→)
c. Phương án A loại vì đẳng thức MP→ = 1/2 (AC→ + AD→ - AB→) đúng nhưng chưa chứng tỏ được bốn điểm M, N, P, Q đồng phẳng.
Phương án B loại vì đẳng thức. MP→ = 1/2(MN→+ MQ→) sai
Phương án C loại vì đẳng thức MP→ = MB→ + BP→ đúng nhưng không liên quan đến hai điểm N và Q.
Phương án D đúng vì đẳng thức MP→ = MN→ + MQ→ đúng và chứng tỏ ba vecto MP→, MN→ và MQ→ đồng phẳng.
Câu 9:
a. MA2 = (ME→ + EA→ )2 = ME2 + EA2 + 2ME→.EA→
MB2 = (ME→ + EB→ )2 = ME2 + EB2 + 2ME→.EB→
Suy ra: MA2 + MB2 = 2ME2 + 2a2 (do EA→ + EB→ = 0→)
b. Tương tự MC2 + MD2 = 2MF2 + 2b2
c. Tương tự ME2 + MF2 = 2MG2 + 2c2
d. MA2 + MB2 + MC2 + MD2 = 2ME2 + 2MF2 + 2a2 + 2b2 = 4MG2 + 2(a2 + b2 + c2)
Câu 10:
Loại phương án A vì hai vecto OM→ và BC→ không trùng phương
Loại phương án B vì góc giữa hai vecto OM→ và BC→ không thể là góc nhọn
Loại phương án C vì hai vecto OM→ và BC→ không vuông góc với nhau
Vậy phương án D đúng vì
Suy ra: (OM→, BC→) = 1200
Câu 11:
a. Phương án A sai vì SA→.SB→ ≠ |SA→|.|SB→| = a2
Phương án B sai vì:
Phương án C đúng:
Phương án D sai vì SA→.AB→ = -AS→.AB→ ≠ -|AS→ |.|AB→ | = -a2