Bài 79 trang 170 SBT Toán 9 Tập 1
Bài 8: Vị trí tương đối của hai đường tròn Bài 79 trang 170 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A; 2R) a. Hai đường tròn (O) và (A) có vị trí tương đối như thế nào với nhau? b. Gọi B là một giao ...
Bài 8: Vị trí tương đối của hai đường tròn
Bài 79 trang 170 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A; 2R)
a. Hai đường tròn (O) và (A) có vị trí tương đối như thế nào với nhau?
b. Gọi B là một giao điểm của hai đường tròn trên. Vẽ đường kính BOC của đường tròn (O). Gọi D là giao điểm (khác C) của AC và đường tròn (O). Chứng minh rằng AD = DC
Lời giải:
a. Ta có: R < OA < 3R ⇔ 2R – R < OA < 2R + R
Suy ra hai đường tròn (O ; R) và (A ; 2R) cắt nhau
b. Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên
Suy ra : BD ⊥ AC (1)
Ta có : AB = 2R và BC = 2OB = 2R
Suy ra tam giác ABC cân tại B (2)
Từ (1) và (2) suy ra : AD = DC
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)