Bài 72 trang 127 SGK giải tích 12 nâng cao
Bài 72 trang 127 SGK giải tích 12 nâng cao Giải các hệ phương trình ...
Bài 72 trang 127 SGK giải tích 12 nâng cao
Giải các hệ phương trình
Bài 72. Giải các hệ phương trình
(a),left{ matrix{
x + y = 20 hfill cr
{log _4}x + {log _4}y = 1 + {log _4}9; hfill cr}
ight.)
(b),left{ matrix{
x + y = 1 hfill cr
{4^{ - 2x}} + {4^{ - 2y}} = 0,5 hfill cr}
ight.)
Giải
a) Điều kiện: (x > 0; y > 0).
(eqalign{
& ,left{ matrix{
x + y = 20 hfill cr
{log _4}x + {log _4}y = 1 + {log _4}9 hfill cr}
ight. Leftrightarrow left{ matrix{
x + y = 20 hfill cr
{log _4}xy = {log _4}36 hfill cr}
ight. Leftrightarrow left{ matrix{
x + y = 20 hfill cr
xy = 36 hfill cr}
ight. cr
& ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Leftrightarrow left{ matrix{
x = 2 hfill cr
y = 18 hfill cr}
ight.,,,, ext{ hoặc },,,,,left{ matrix{
x = 18 hfill cr
y = 2 hfill cr}
ight. cr} )
Vậy (S = left{ {left( {2;18}
ight);,left( {18;2}
ight)}
ight})
b) Từ phương trình thứ nhất suy ra (y = 1 – x), thay vào phương trình thứ hai ta được:
({4^{ - 2x}} + {4^{ - 2left( {1 - x}
ight)}} = 0,5 Leftrightarrow ,,{4^{ - 2x}} + {4^{ - 2 + 2x}} = {1 over 2})
Đặt (t = {4^{2x,}},left( {t > 0}
ight)) ta được:
(eqalign{
& {1 over t} + {t over {16}} = {1 over 2} Leftrightarrow 16 + {t^2} = 8t Leftrightarrow {left( {t - 4}
ight)^2} = 0 Leftrightarrow t = 4 cr
& Leftrightarrow {4^{2x}} = 4 Leftrightarrow 2x = 1 Leftrightarrow x = {1 over 2} cr} )
Với (x = {1 over 2}) ta có (y = 1 - x = 1 - {1 over 2} = {1 over 2})
Vậy (S = left{ {left( {{1 over 2};{1 over 2}}
ight)}
ight})
soanbailop6.com