Bài 63 trang 92 sgk Toán lớp 9 tập 2
Bài 63 trang 92 sgk Toán lớp 9 tập 2 Bài 63. Vẽ các hình lục giác đều ...
Bài 63 trang 92 sgk Toán lớp 9 tập 2
Bài 63. Vẽ các hình lục giác đều
Bài 63. Vẽ các hình lục giác đều, hình vuông, hình tam giác đều cùng nội tiếp đường tròn ((O;R)) rồi tính cạnh của các hình đó theo (R).
Hướng dẫn giải:
Hình a.
Gọi ({a_i}) là cạnh của đa giác đều i cạnh.
a) ({a_6}= R) (vì (O{A_1}{A_2}) là tam giác đều)
Cách vẽ: vẽ đường tròn ((O;R)). Trên đường tròn ta đặt liên tiếp các cung (overparen{{A_1}{A_2}}), (overparen{{A_2}{A_3}}),...,(overparen{{A_6}{A_1}}) mà căng cung có độ dài bằng (R). Nối ({A_1}) với ({A_2}), ({A_2}) với ({A_3}),…, ({A_6}) với ({A_1}) ta được hình lục giác đều ({A_1})({A_2})({A_3})({A_4})({A_5})({A_6}) nội tiếp đường tròn
b) Hình b
Trong tam giác vuông (O{A_1}{A_2}): ({a^2} = {R^2} + {R^2} = 2{R^2} Rightarrow a = Rsqrt 2 )
Cách vẽ như ở bài tập 61.
c) Hình c
({A_1}H) =( R) +(frac{R}{2}) = (frac{3R}{2})
({A_3}H) = (frac{a}{2})
({A_1})({A_3})= (a)
Trong tam giác vuông ({A_1}H{A_3}) ta có: ({A_1}{H^2} = {A_1}{A_3}^2 - {A_3}{H^2}).
Từ đó (frac{9R^{2}}{4}) = (a^2) - (frac{a^{2}}{4}).
(Rightarrow{a^2} = 3{R^2} Rightarrow a = Rsqrt 3 )
Cách vẽ như câu a) hình a.
Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác ({A_1}{A_3}{A_5}) như trên hình c
soanbailop6.com