Bài 38 trang 84 SBT Toán 8 Tập 1
Bài 4: Đường trung bình của tam giác, của hình thang : Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK. Lời giải: * Trong ∆ABC, ta có: E là trung điểm của AB (gt) D ...
Bài 4: Đường trung bình của tam giác, của hình thang
: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.
Lời giải:
* Trong ∆ABC, ta có:
E là trung điểm của AB (gt)
D là trung điểm của AC (gt)
Nên ED là đường trung bình của ∆ABC
⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)
* Trong ∆GBC, ta có:
I là trung điểm của BG (gt)
K là trúng điểm của CG (gt)
Nên IK là đường trung bình của ∆GBC
⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)
Từ (l) và (2) suy ra: IK // DE, IK = DE.
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)