11/01/2018, 14:02

Bài 35 trang 79 - Sách giáo khoa toán 8 tập 2

Bài 35 trang 79 - Sách giáo khoa toán 8 tập 2 Bài 35 Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng K ...

Bài 35 trang 79 - Sách giáo khoa toán 8 tập 2

Bài 35 Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng K

Bài 35 Chứng minh rằng nếu tam giác (A'B'C') đồng dạng với tam giác (ABC) theo tỉ số (k) thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng (k).

Giải:

(∆A'B'C' ∽ ∆ABC) theo tỉ số (k= frac{A'B'}{AB})

( Rightarrow widehat {BAC} = widehat {B'A'C'})   (1)

(AD) là phân giác góc (widehat {BAC}) nên (widehat {BAD} = {1 over 2}widehat {BAC})     (2)

(A'D') là phân giác góc (widehat {B'A'C'}) nên (widehat {B'A'D'} = {1 over 2}widehat {B'A'C'})   (3)

Từ (1),(2) và (3) suy ra: (widehat{BAD}) = (widehat{B'A'D'})

Xét (∆A'B'D') và (∆ABD) có:

+) (widehat{B}) = (widehat{B'}) 

+) (widehat{BAD}) = (widehat{B'A'D'})

(Rightarrow ∆A'B'D' ∽ ∆ABD) theo tỉ số ( frac{A'B'}{AB})= (frac{A'D'}{AD}=k)

soanbailop6.com

0