08/05/2018, 21:46

Bài 31 trang 161 SBT Toán 9 Tập 1

Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây Bài 31 trang 161 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), các bán kính OA, OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng: a. OC là tia phân ...

Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây

Bài 31 trang 161 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), các bán kính OA, OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng:

a. OC là tia phân giác của góc AOB

b. OC vuông góc với AB

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Kẻ OH ⊥ AM, OK ⊥ AN

Ta có: AM = AN (gt)

Suy ra: OH = OK (hai dây bằng nhau cách đều tâm)

Xét hai tam giác OCH và OCK, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

OC chung

OH = OK (chứng minh trên)

Suy ra: ∆OIH = ∆OIK (cạnh huyền, cạnh góc vuông)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét hai tam giác OAH và OBH, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

OA = OB

OH = OK (chứng minh trên)

Suy ra: ∆OAH = ∆OBH (cạnh huyền, cạnh góc vuông)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b. Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao (tính chất tam giác cân)

Suy ra: OC ⊥ AB

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)

0