Bài 33 trang 161 SBT Toán 9 Tập 1
Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây Bài 33 trang 161 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), hai dây AB, CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB > CD, chứng minh rằng MH > MK. ...
Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 33 trang 161 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), hai dây AB, CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB > CD, chứng minh rằng MH > MK.
Lời giải:
a. Ta có: HA = HB (gt)
Suy ra : OH ⊥ AB (đường kính dây cung)
Lại có : KC = KD (gt)
Suy ra : OK ⊥ CD (đường kính dây cung)
Mà AB > CD (gt)
Nên OK > OH (dây lớn hơn gần tâm hơn)
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
OM2 = OH2 + HM2
Suy ra : HM2 = OM2 – OH2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
OM2 = OK2 + KM2
Suy ra: KM2 = OM2 – OK2 (2)
Mà OH < OK (cmt) (3)
Từ (1), (2) và (3) suy ra: HM2 > KM2 hay HM > KM
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)