Bài 12 trang 158 SBT Toán 9 Tập 1
Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn Bài 12 trang 158 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D. a. Vì sao AD là đường kính của đường tròn (O)? b. Tính số đo góc ACD c. Cho BC = ...
Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 12 trang 158 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D.
a. Vì sao AD là đường kính của đường tròn (O)?
b. Tính số đo góc ACD
c. Cho BC = 24cm, AC = 20cm. Tính đường cao AH và bán kính đường tròn (O)
Lời giải:
a. Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.
Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.
Suy ra AD là đường kính của (O).
b. Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc CAD = 90o.
c. Ta có: AH ⊥ BC ⇒ HB = HC = BC/2 = 24/2 = 12(cm)
Áp dụng định lí Pitago vào tam giác vuông ACH ta có:
AC2 = AH2 + HC2
Suy ra: AH2 = AC2 - HC2 = 202 - 122 = 400 - 144 = 256
AH = 16 (cm)
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AC2 = AH.AD ⇒ AD = AC2/AH = 202/16 = 25 (cm)
Vậy bán kính của đường tròn (O) là: R = AD/2 = 25/2 = 12,5 (cm)
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)