Bài 23 trang 29 SGK Hình học 12 Nâng cao
Bài 23 trang 29 SGK Hình học 12 Nâng cao Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB,SC lần lượt lấy ba điểm A’, B’, C' khác với S. Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S.A'B'C'. Chứng minh rằng: ...
Bài 23 trang 29 SGK Hình học 12 Nâng cao
Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB,SC lần lượt lấy ba điểm A’, B’, C' khác với S. Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S.A'B'C'. Chứng minh rằng:
Bài 23. Cho khối chóp tam giác (S.ABC). Trên ba đường thẳng (SA, SB,SC) lần lượt lấy ba điểm (A’, B’, C') khác với (S). Gọi (V) và (V’) lần lượt là thể tích của các khối chóp (S.ABC) và (S.A'B'C'). Chứng minh rằng:
({V over {V'}} = {{SA} over {SA'}}.{{SB} over {SB'}}.{{SC} over {SC'}})
Giải
Gọi (H) và (H’) lần lượt là hình chiếu của (A) và (A’) trên mp ((SBC)). Khi đó (3) điểm (S, H, H’) thẳng hàng (vì chúng là hình chiếu của ba điểm thẳng hàng (S, A, A’) trên mp ((SBC))) và vì (A’H’ // AH) nên ({{AH} over {A'H'}} = {{SA} over {SA'}}). Ta có:
({{{S_{SBC}}} over {{S_{SB'C'}}}} = {{{1 over 2}SB.SC.sinwidehat {BSC}} over {{1 over 2}SB'.SC'.sinwidehat {B'SC'}}} = {{SB} over {SB'}}.{{SC} over {SC'}})
Suy ra ({V over {V'}} = {{{V_{A.SBC}}} over {{V_{A'.SB'C'}}}} = {{{1 over 3}{S_{SBC}}.AH} over {{1 over 3}{S_{SB'C'}}.A'H'}} = {{SA} over {SA'}}.{{SB} over {SB'}}.{{SC} over {SC'}})
loigaihay.com