Bài 2.8 trang 164 Sách bài tập (SBT) Đại số và giải tích 11
Cho hàm số ...
Cho hàm số
Cho hàm số (fleft( x ight) = {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}}) có đồ thị như hình 4
a) Dựa vào đồ thị, dự đoán giới hạn của hàm (fleft( x ight)) số khi (x o {1^ + }{ m{ }};{ m{ }}x o {1^ - }{ m{ }};{ m{ }}x o {4^ + }{ m{ }};{ m{ }}x o {4^ - }{ m{ }};{ m{ }}x o + infty { m{ }};{ m{ }}x o - infty )
b) Chứng minh dự đoán trên.
Giải:
a) Dự đoán :
(eqalign{
& mathop {lim }limits_{x o {1^ + }} fleft( x
ight) = + infty {
m{ ; }}mathop {lim }limits_{x o {1^ - }} fleft( x
ight) = - infty {
m{ ; }}mathop {lim }limits_{x o {4^ + }} fleft( x
ight) = - infty {
m{ ;}} cr
& {
m{ }}mathop {lim }limits_{x o {4^ - }} fleft( x
ight) = + infty {
m{ ;}}mathop {lim }limits_{x o + infty } fleft( x
ight) = 2{
m{ ; }}mathop {lim }limits_{x o - infty } fleft( x
ight) = 2. cr} )
b) Ta có
(mathop {lim }limits_{x o {1^ + }} left( {2{x^2} - 15x + 12} ight) = - 1 < 0,{ m{ }}mathop {lim }limits_{x o {1^ + }} left( {{x^2} - 5x + 4} ight) = 0)
và ({x^2} - 5x + 4 < 0) với mọi (x in left( {1;4} ight)) nên (mathop {lim }limits_{x o {1^ + }} {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}} = + infty )
Vì
(eqalign{
& mathop {lim }limits_{x o {1^ - }} left( {2{x^2} - 15x + 12}
ight) = - 1 < 0, cr
& mathop {lim }limits_{x o {1^ - }} left( {{x^2} - 5x + 4}
ight) = 0 cr} )
và ({x^2} - 5x + 4 > 0) với mọi x < 1 nên (mathop {lim }limits_{x o {1^ - }} {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}} = - infty )
Vì
(eqalign{
& mathop {lim }limits_{x o {4^ + }} left( {2{x^2} - 15x + 12}
ight) = - 16 < 0, cr
& mathop {lim }limits_{x o {4^ + }} left( {{x^2} - 5x + 4}
ight) = 0 cr} )
và ({x^2} - 5x + 4 > 0) với mọi x > 4 nên (mathop {lim }limits_{x o {4^ + }} {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}} = - infty )
Vì
(eqalign{
& mathop {lim }limits_{x o {4^ - }} left( {2{x^2} - 15x + 12}
ight) = - 16 < 0, cr
& mathop {lim }limits_{x o {4^ - }} left( {{x^2} - 5x + 4}
ight) = 0 cr} )
và ({x^2} - 5x + 4 < 0) với mọi (x in left( {1;4} ight)) nên (mathop {lim }limits_{x o {4^ - }} {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}} = + infty) ;
(mathop {lim }limits_{x o + infty } {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}} = mathop {lim }limits_{x o + infty } {{2 - {{15} over x} + {{12} over {{x^2}}}} over {1 - {5 over x} + {4 over {{x^2}}}}} = 2)
(mathop {lim }limits_{x o - infty } {{2{x^2} - 15x + 12} over {{x^2} - 5x + 4}} = mathop {lim }limits_{x o - infty } {{2 - {{15} over x} + {{12} over {{x^2}}}} over {1 - {5 over x} + {4 over {{x^2}}}}} = 2)