Bài 11 trang 13 sgk Toán 8 tập 2, Bài 11. Giải các phương trình:...
Bài 11. Giải các phương trình. Bài 11 trang 13 sgk toán 8 tập 2 – Phương trình đưa được về dạng ax + b = 0 Bài 11. Giải các phương trình: a) 3x – 2 = 2x – 3; b) 3 – 4u + 24 + 6u = u + 27 + 3u; c) 5 – (x – 6) = 4(3 – 2x); d) ...
Bài 11. Giải các phương trình:
a) 3x – 2 = 2x – 3; b) 3 – 4u + 24 + 6u = u + 27 + 3u;
c) 5 – (x – 6) = 4(3 – 2x); d) -6(1,5 – 2x) = 3(-15 + 2x);
e) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7; f) ( frac{3}{2}(x -frac{5}{4})-frac{5}{8}) = x
Hướng dẫn giải:
a) 3x – 2 = 2x – 3
⇔ 3x – 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 – 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u – 4u = 27 – 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 – (x – 6) = 4(3 – 2x)
⇔ 5 – x + 6 = 12 – 8x
⇔ -x + 11 = 12 – 8x
⇔ -x + 8x = 12 – 11
⇔ 7x = 1
⇔ x = ( frac{1}{7})
Vậy phương trình có nghiệm duy nhất x = ( frac{1}{7}).
d) -6(1,5 – 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x – 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
e) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
⇔ 0,1 – t + 0,2 = 2t – 5 – 0,7
⇔ -t + 0,3 = 2t – 5,7
⇔ -t – 2t = -5,7 – 0,3
⇔ -3t = -6
⇔ t = 2
Vậy phương trình có nghiệm duy nhất t = 2
f) ( frac{3}{2}(x -frac{5}{4})-frac{5}{8}) = x
⇔ ( frac{3}{2})x – ( frac{15}{8}) – ( frac{5}{8}) = x
⇔ ( frac{3}{2})x – x = ( frac{15}{8}) + ( frac{5}{8})
⇔ ( frac{1}{2})x = ( frac{20}{8})
⇔ x = ( frac{20}{8}) : ( frac{1}{2})
⇔ x = 5
Vậy phương trình có nghiệm duy nhất x = 5