Bài 1.24 trang 20 Sách bài tập (SBT) Giải tích 12
Tìm các giá trị của m để phương trình : x3 – 3x2 – m = 0 có ba nghiệm phân biệt. ...
Tìm các giá trị của m để phương trình : x3 – 3x2 – m = 0 có ba nghiệm phân biệt.
Tìm các giá trị của m để phương trình : x3 – 3x2 – m = 0 có ba nghiệm phân biệt.
Hướng dẫn làm bài:
Đặt f(x) = x3 – 3x2 (C1)
y = m (C2)
Phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt khi và chỉ khi (C1) và (C2) có ba giao điểm.
Ta có:
(eqalign{
& f'(x) = 3{x^2} - 6x = 3x(x - 2) = 0 cr
& Leftrightarrow left[ matrix{
x = 0 hfill cr
x = 2 hfill cr}
ight. cr} )
Bảng biến thiên:
Suy ra (C1),(C2) cắt nhau tại 3 điểm khi -4 < m < 0
Kết luận : Phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt với những giá trị của m thỏa mãn điều kiện: -4 < m < 0.
Sachbaitap.com