Tứ giác nội tiếp
A. Phương pháp giải 1. Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (gọi tắt là tứ giác nội tiếp). 2. Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng . 3. Nếu trong một tứ giác có tổng số đo hai góc đối diện ...
A. Phương pháp giải
1. Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (gọi tắt là tứ giác nội tiếp).
2. Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng .
3. Nếu trong một tứ giác có tổng số đo hai góc đối diện bằng thì tứ giác đó nội tiếp được đường tròn.
4. Nếu một tứ giác lồi có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc thì tứ giác đó nội tiếp được đường tròn.
B. Bài tập tự luận
Bài 1: Cho ΔABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) Tứ giác BCEF nội tiếp.
b) HA.HD = HB.HE = HC.HF.
Hướng dẫn giải
a) Ta có ∠BEC = ∠BFC = 90o
Suy ra các điểm E, F cùng thuộc đường tròn đường kính BC hay tứ giác BCEF nội tiếp.
b) Vẽ đường tròn đường kính BC. Xét ΔBHF và ΔCHE có:
+) ∠EBF = ∠ECF (hai góc nội tiếp cùng chắn ).
+) ∠FHB = ∠EHC(đối đỉnh).
Suy ra ΔBHF ∼ ΔCHE (g.g)
BH/CH = HF/HE hay HB.HE = HC.HF (1)
Chứng minh tương tự ta có:
HA.HD = HB.HE (2)
Từ (1) và (2) suy ra: HA.HD = HB.HE = HC.HF.
Bài 2: Cho ΔABC nhọn, đường cao AH. Các điểm M và N lần lượt là hình chiếu vuông góc của H trên AB, AC. Chứng minh rằng:
a) AM.AB = AN.AC.
b) Tứ giác BMNC nội tiếp.
Hướng dẫn giải
a) Ta có: ∠AMH = ∠ANH = 90o (gt)
Suy ra các điểm M, N cùng thuộc đường tròn đường kính AH nên:
∠AMN = ∠AHN (hai góc nội tiếp cùng chắn cung AN)
Mặt