Tính chất hoạt động của hệ keo
Trong các hệ phân tán, giữa các phân tử có ba loại chuyển động: tịnh tiến, quay và dao động. Trong chuyển động tịnh tiến số dao động va chạm giữa các phân tử là rất lớn dẫn đến sự vô trật tự được gọi là chuyển động Brown, đó là chuyển động ...
Trong các hệ phân tán, giữa các phân tử có ba loại chuyển động: tịnh tiến, quay và dao động. Trong chuyển động tịnh tiến số dao động va chạm giữa các phân tử là rất lớn dẫn đến sự vô trật tự được gọi là chuyển động Brown, đó là chuyển động hỗn loạn có cường độ không phụ thuộc theo thời gian, nhưng lại được tăng cường khi nhiệt độ tăng. Ngoài chuyển động Brown tịnh tiến các hạt còn tham gia chuyển động Brown quay.
Chuyển động của các hạt keo là kết quả của sự va chạm hỗn loạn giữa các phân tử của môi trường với các hạt. Đối với hạt có kích thước nhỏ (a < 5nm), số va chạm từ các hướng thường không đều nhau và làm cho các hạt chuyển động hỗn loạn về nhiều hướng theo quỹ đạo phức tạp. Đối với hạt có kích thước tương đối lớn (a > 5nm), những va chạm đồng thời từ các hướng có thể bù trừ cho nhau về lực, nên hạt gần như đứng yên.
Nếu các phân tử của môi trường phân tán va đập vào hạt keo không thẳng góc có thể làm cho hạt keo chuyển động quay, cũng có thể làm cho hạt keo dao động quanh vị trí cân bằng (đặc biệt khi hạt có dạng không phải hình cầu).
Do không thể quan sát hết được quãng đường chuyển dịch thật sự của hạt keo nên Einstein đã sử dụng khái niệm quãng đường chuyển dịch trung bình của hạt trong khoảng thời gian t. Giá trị này là hình chiếu đoạn đường đi từ điểm đầu đến điểm cuối theo hướng xác định trong thời gian t.
Để tính toán người ta dùng đại lượng chuyển dịch bình phương trung bình ∆x2 của hạt.
Δ¯x2=Δ12+Δ22+....+Δn2n size 12{ {overline {Δ}} rSub { size 8{x} rSup { size 8{2} } } = { {Δ rSub { size 8{1} rSup { size 8{2} } } +Δ rSub { size 8{2} rSup { size 8{2} } } + "." "." "." "." +Δ rSub { size 8{n} rSup { size 8{2} } } } over {n} } } {} (3.1)
Ở đây, ∆1, ∆2, ∆3, ..., ∆n, là hình chiếu của những chuyển dịch của hạt trên trục x trong những khoảng thời gian bằng nhau và n là số lần lấy hình chiếu. (Người ta không dùng giá trị trung bình cộng hình chiếu của sự chuyển dịch vì giá trị này sẽ bằng 0, do tính có xác suất đồng đều theo mọi hướng)
Vậy chuyển động của các hạt keo có biểu hiện của chuyển động nhiệt. Qua nghiên cứu thực nghiệm động học, người ta phát hiện hệ keo có những tính chất động học như thẩm thấu, khuếch tán, sa lắng.
Khuếch tán là quá trình tự san bằng nồng độ trong hệ (để hóa thế của mỗi cấu tử đồng nhất ở mọi điểm trong thể tích hệ), tức là quá trình chuyển chất từ vùng có nồng độ lớn đến vùng có nồng độ nhỏ. Quá trình đó tự xảy ra trong hệ do ảnh hưởng của chuyển động nhiệt. Quá trình khuếch tán là bất thuận nghịch và tiến hành cho đến khi nồng độ hoàn toàn đồng đều. Mức độ không đồng đều được đặc trưng bởi gradien nồng độ - là biến thiên nồng độ trên một đơn vị khoảng cách, nó quyết định mức độ và hướng của quá trình khuếch tán.
Các định luật khuếch tán Fick
Định luật Fick I: Lượng chất m chuyển qua tiết diện S (đặt vuông góc với chiều khuếch tán), thì tỉ lệ thuận với S, với khoảng thời gian khuếch tán t và với gradien nồng độ theo khoảng cách (dC/dx).
dm=−DdCdxS.dt size 12{ ital "dm"= - D { { ital "dC"} over { ital "dx"} } S "." ital "dt"} {} (3.2)
Hệ số tỉ lệ D gọi là hệ số khuếch tán. Vì khuếch tán luôn xảy ra từ nơi có nồng độ cao đến nơi có nồng độ thấp và luôn luôn (dC/dx) < 0 (c giảm khi ta tăng x), nên cần đặt dấu trừ trước biểu thức để dm > 0.
Với định nghĩa dòng khuếch tán i là lượng chất chuyển qua một đơn vị bề mặt trong một đơn vị thời gian, định luật Fick I có thể trình bày cách
- 1 Hệ thống truyền số
- 2 Các giai đoạn thiết kế
- 3 Cấu trúc hộ gia đình và sức khỏe trẻ em: những phát hiện qua khảo sát nhân khẩu học và sức khỏe 1997
- 4 Những chiều cạnh tranh kinh tế - xã hội trong sự tiến hóa của mô hình nhà ở đô thị Hà Nội
- 5 Chung quanh vấn đề xã hội học nông thôn
- 6 Chapter 6
- 7 Tìm hiểu chức năng và đặc điểm của gia đình người Việt-dưới góc độ xã hội học lịch sử
- 8 Đến với các lý thuyết xã hội học quan điểm tiến hóa
- 9 Bài tập về tập hợp
- 10 Cấu trúc rẽ nhánh trong lập trình C