Giải Toán lớp 9 Ôn tập chương 2 phần Hình học
Giải Toán lớp 9 Ôn tập chương 2 phần Hình học Bài 1 (trang 126 SGK Toán 9 Tập 1): Thế nào là đường tròn ngoại tiếp một tam giác? Nêu cách xác định tâm của đường tròn ngoại tiếp tam giác. Lời giải: Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh ...
Giải Toán lớp 9 Ôn tập chương 2 phần Hình học
Bài 1 (trang 126 SGK Toán 9 Tập 1):
Thế nào là đường tròn ngoại tiếp một tam giác? Nêu cách xác định tâm của đường tròn ngoại tiếp tam giác.
Lời giải:
Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác. Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.
Bài 2 (trang 126 SGK Toán 9 Tập 1):
Thế nào là đường tròn nội tiếp một tam giác? Nêu cách xác định tâm của đường tròn nội tiếp tam giác.
Lời giải:
Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác. Tâm đường tròn nội tiếp tam giác là giao điểm của các tia phân giác của các góc trong của tam giác.
Bài 3 (trang 126 SGK Toán 9 Tập 1):
Chỉ rõ tâm đối xứng của đường tròn, trục đối xứng của đường tròn.
Lời giải:
Tâm của đường tròn là tâm đối xứng của đường tròn đó. Mọi dường kính của đường tròn đều là trục đối xứng của đường tròn.
Bài 4 (trang 126 SGK Toán 9 Tập 1):
Chứng minh định lí: Trong các dây của một đường tròn, dây lớn nhất là đường kính.
Lời giải:
Giả sử ta có đường tròn đường kính AB = 2R và một dây CD. Trong COD, theo bất đẳng thức tam giác ta có:
CD ≤ OC + CD => CD ≤ 2R => CD ≤ AB
Bài 5 (trang 126 SGK Toán 9 Tập 1):
Phát biểu các định lí về quan hệ vuông góc giữa đường kính và dây.
Lời giải:
Nếu một đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. Ngược lại, một đường kính đi qua trung điểm của một dây không phải là đường kính thì vuông góc với dây ấy.
Bài 6 (trang 126 SGK Toán 9 Tập 1):
Phát biểu các định lí về liên hệ giữa dây và khoảng cách từ tâm đến dây.
Lời giải:
Trong một đường tròn:
– Hai dây bằng nhau thì cách đều tâm và ngược lại, hai dây cách đều tâm thì bằng nhau.
– Dây lớn hơn thì gần tâm hơn và ngược lại, dây gần tâm hơn thì lớn hơn.
Bài 7 (trang 126 SGK Toán 9 Tập 1):
Nêu các vị trí tương đối của đường thẳng và đường tròn. Phát biểu tính chất của tiếp tuyến và dấu hiệu nhận biết tiếp tuyến. Phát biểu các tính chất của hai tiếp tuyến cắt nhau.
Lời giải:
Phần lý thuyết này đã được tổng hợp đầy đủ trong sách giáo khoa.
Bài 8 (trang 126 SGK Toán 9 Tập 1):
Phát biểu định nghĩa tiếp tuyến của đường tròn. Phát biểu tính chất của tiếp tuyến và dấu hiệu nhận biết tiếp tuyến. Phát biểu các tính chất của hai tiếp tuyến cắt nhau.
Lời giải:
– Tiếp tuyến với đường tròn là đường thẳng chỉ có một điểm chung với đường tròn.
-Tiếp tuyến với đường tròn thì vuông góc với bán kính đi qua tiếp điểm.
– Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua tiếp điểm ấy thì đường thẳng ấy là một tiếp tuyến của đường tròn.
– Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì:
a)Điểm đó cách đều hai tiếp điểm.
b)Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.
c)Tia kẻ từ tâm qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua tiếp điểm.
Bài 9 (trang 126 SGK Toán 9 Tập 1):
Nêu các vị trí tương đồi của hai đường tròn. Ứng với mỗi vị trí đó, viết hệ thức giữa đoạn nối tâm d với các bán kính R, r.
Lời giải:
Gọi R, r là hai bán kính, d là đoạn nối tâm.
Bài 10 (trang 126 SGK Toán 9 Tập 1):
Tiếp điểm của hai đường tròn tiếp xúc nhau có vị trí như thế nào đối với đường nối tâm? Các giao điểm của hai đường tròn cắt nhau có vị trí như thế nào đối với đường nối tâm?
Lời giải:
Tiếp điểm của hai đường tròn tiếp xúc với nhau thì nằm trên đường nối tâm.
– Các giao điểm của hai đường tròn cắt nhau thì đối xứng với nhau qua đường nối tâm.
Bài 41 (trang 128 SGK Toán 9 Tập 1):
Cho đường tròn (O) có đường kính BC, dây AD vuông góc với BC tại H.
Gọi E, F theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. Gọi (I), (K) theo thứ tự là các đường tròn ngoại tiếp tam giác HBE, HCF.
a)Hãy xác định vị trí tương đối của các đường tròn: (I) và (O), (K) và (O), (I) và (K).
b)Tứ giác AEHF là hình gì? Vì sao?
c)Chứng minh đẳng thức AE.AB = AF.AC
d)Chứng minh rằng EF là tiếp tuyến chung của hai đường tròn (I) và (K).
e)Xác định vị trí của điểm H để EF có độ dài lớn nhất.
Lời giải:
a) Hình bên
IA = OB – IB => (I) tiếp xúc trong với (O).
OK = OC – KC => (K) tiếp xúc trong với (O)
IK = OH + KH => (I) tiếp xúc ngoài với (K)
Chú ý: Từ các tam giác nội tiếp đường tròn ABC, BEH, CEH ta rút ra nhận xét sau: "Nếu tam giác nội tiếp đường tròn có một cạnh là đường kính thì tam giác đó là tam giác vuông".
c) AHB vuông nên AE.AB = AH2, AHC vuông nên AF.AC = AH2
Suy ra AE.AB = AF.AC
d) Gọi G là giao điểm của AH và EF
Do đó EF là tiếp tuyến của đường tròn (K)
Tương tự, EF là tiếp tuyến của đường tròn (I)
e) Hình bên
Cách 1: EF = AH ≤ OA (OA có độ dài không đổi)
EF = OA <=> AH = OA <=> H trùng O <=> dây AD đi qua O.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.
Cách 2: EF = AH = AD/2.
Do đó: EF lớn nhất <=> AD lớn nhất <=> dây AD là đường kính.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.
Bài 42 (trang 128 SGK Toán 9 Tập 1):
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B ϵ (O), C ϵ (O’). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh rằng:
a)Tứ giác AEMF là hình chữ nhật.
b) ME.MO = MF.MO’
c) OO’ là tiếp tuyến của đường tròn có đường kính là BC
d) BC là tiếp tuyến của đường tròn có đường kính OO’
Lời giải:
b)ME.MO = MA2 (hệ thức lượng trong MAO vuông)
MF.MO’ = MA2 (hệ thức lượng trong MAO’ vuông)
Suy ra ME.MO = MF.MO’
c)Đường tròn có đường kính BC có tâm M, bán kính MA.OO’ vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
d)Hình b
Gọi I là trung điểm của OO’, I là tâm của đường tròn có đường kính OO’, IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO’. IM là đường trung bình của hình thang OBCO’ nên IM // OB // O’C. Do đó IM ⊥ BC.
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).
Bài 43 (trang 128 SGK Toán 9 Tập 1):
Cho hai đường tròn (O; R) và (O’; r) cắt nhau tại A và B (R > r). Gọi I là trung điểm của OO’. Kẻ đường thẳng vuông góc với IA tại A, đường thẳng này cắt các đường tròn (O; R) và (O’; r) theo thứ tự C và D (khác A).
a)Chứng minh rằng AC = AD.
b)Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng KB vuông góc với AB.
Lời giải:
b)Chứng minh KB ⊥ AB
-Ta có OO’ là đường nối tâm của (O) và (O’) nên OO’ là đường trung trực của AB.
Suy ra IE ⊥ AB và EA = EB
Ta có IA = IK (do K là điểm đối xứng của A qua I).
Và EA = EB
Vậy IE là đường trung bình của tam giác AKB.
Suy ra IE // KB
Mà IE ⊥ AB
Suy ra KB ⊥ AB (đpcm)
Từ khóa tìm kiếm:
- bài 42 trang 128 sgk toán 9
- toán lớp 9 ôn tập chương 2 hình học trang 126
- toan lớp 9ôn tập chương 2 hình học
- on tap chuong 2 toan lop 9 hinh hoc hoc ki 1
- ôn tập chương 2 lớp 9
Bài viết liên quan
- Giải Toán lớp 7 Ôn tập chương 2
- Giải Toán lớp 7 Bài 6: Tính chất ba đường phân giác của tam giác
- Giải Toán lớp 2 bài Luyện tập trang 131 SGK Toán lớp 2
- Giải Toán lớp 11 Bài tập ôn tập cuối năm
- Giải Toán lớp 7 Bài 8: Tính chất ba đường trung trực của tam giác
- Giải Toán lớp 9 Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông
- Giải Toán lớp 7 Bài 4: Tính chất ba đường trung tuyến của tam giác
- Giải Toán lớp 11 Câu hỏi ôn tập chương 3