Giải bài tập SGK Toán lớp 8 bài 10: Đường thẳng song song với một đường thẳng cho trước
Giải bài tập SGK Toán lớp 8 bài 10 Giải bài tập Toán lớp 8 bài 10: Đường thẳng song song với một đường thẳng cho trước Giải bài tập SGK Toán lớp 8 bài 10: Đường thẳng song song với một đường thẳng cho trước với ...
Giải bài tập Toán lớp 8 bài 10: Đường thẳng song song với một đường thẳng cho trước
Giải bài tập SGK Toán lớp 8 bài 10: Đường thẳng song song với một đường thẳng cho trước với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8. Lời giải hay bài tập Toán 8 này gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo
Trả lời câu hỏi Toán 8 Tập 1 Bài 10 trang 100: Cho hai đường thẳng song song a và b (h.93).
Gọi A và B là hai điểm bất kì thuộc đường thẳng a, AH và BK là các đường vuông góc kẻ từ A và B đến đường thẳng b. Gọi độ dài AH là h. Tính độ dài BK theo h.
Lời giải
AH // BK (cùng ⊥ b) và AB // HK ⇒ tứ giác ABKH là hình bình hành
⇒ AH = BK = h
Trả lời câu hỏi Toán 8 Tập 1 Bài 10 trang 101: Cho đường thẳng b. Gọi a và a’ là hai đường thẳng song song với đường thẳng b và cùng cách đường thẳng b một khoảng bằng h (h.94), (I) và (II) là các nửa mặt phẳng bờ b. Gọi M, M’ là các điểm cách đường thẳng b một khoảng bằng h, trong đó M thuộc nửa mặt phẳng (I), M’ thuộc nửa mặt phẳng (II). Chứng minh rằng M ∈ a, M’ ∈ a’.
Lời giải
Góc AHH’ = góc HH’A’ (= 90o). Mà 2 góc đó là 2 góc so le trong
⇒ a // b
Và a // a’
⇒ a’ // b
- Tứ giác AMKH có AH = MK (= h) và AH // MK (cùng ⊥ b)
⇒ Tứ giác AMKH là hình bình hành ⇒ AM // HK
Mà a // b ⇒ a // HK
Do đó AM trùng với a hay M ∈ a
- Chứng minh tương tự: M’ ∈ a’
Trả lời câu hỏi Toán 8 Tập 1 Bài 10 trang 101: Xét các tam giác ABC có BC cố định, đường cao ứng với cạnh BC luôn bằng 2 cm (h.95). Đỉnh A của các tam giác đó nằm trên đường nào?
Lời giải
Đỉnh A của các tam giác đó nằm trên đường thẳng song song với BC và cách BC một khoảng bằng 2 cm
Trả lời câu hỏi Toán 8 Tập 1 Bài 10 trang 102: Cho hình 96b, trong đó các đường thẳng a, b, c, d song song với nhau.
Chứng minh rằng:
a) Nếu các đường thẳng a, b, c, d song song cách đều thì EF = FG = GH.
b) Nếu EF = FG = GH thì các đường thẳng a, b, c, d song song cách đều.
Lời giải
a) Các đường thẳng a, b, c, d song song cách đều ⇒ AB = BC = CD
⇒ B là trung điểm của AC; C là trung điểm của BD
- Hình thang AEGC (AE // GC) có B là trung điểm của AC và BF song song hai cạnh đáy
⇒ F là trung điểm EG (định lí đường trung bình của hình thang)
⇒ EF = FG
- Chứng minh tương tự ⇒ G là trung điểm FH
⇒ FG = GH
Vậy EF = FG = GH
Bài 67 (trang 102 SGK Toán 8 Tập 1): Cho đoạn thẳng AB. Kẻ tia Ax bất kì. Trên tia Ax lấy các điểm C, D, E sao cho AC = CD = DE (h.97). Kẻ đoạn thẳng EB. Qua C, D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra ba phần bằng nhau.
Lời giải:
Ta có: EB // DD' // CC' và AC = CD = DE.
Nên theo định lí về các đường thẳng song song cách đều ta suy ra AC' = C'D' = D'B
Vậy đoạn thẳng AB bị chia ra ba phần bằng nhau.
Bài 68 (trang 102 SGK Toán 8 Tập 1): Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. Lấy điểm B bất kì thuộc đường thẳng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào?
Lời giải:
Kẻ AH và CK vuông góc với d.
Ta có AB = CB (gt)
Nên ΔAHB = ΔCKB (cạnh huyền - góc nhọn)
Suy ra CK = AH = 2cm
Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.
Bài 69 (trang 103 SGK Toán 8 Tập 1): Ghép mỗi ý (1), (2), (3), (4) với một trong các ý (5), (6), (7), (8) để được một khẳng định đúng.
(1) Tập hợp các điểm cách A cố định một khoảng 3cm.
(2) Tập hợp các điểm cách đều hai đầu của đoạn thẳng AB cố định
(3) Tập hợp các điểm nằm trong góc xOy và cách đều hai cạnh của góc đó
(4) Tập hợp các điểm cách đều đường thẳng a cố định một khoảng 3cm.
(5) Là đường trung trực của đoạn thẳng AB.
(6) là hai đường thẳng song song với a và cách a một khoảng 3cm.
(7) là đường tròn tâm A bán kính 3cm.
(8) là tia phân giác của góc xOy
Lời giải:
Ghép các ý:
(1) với (7)
(2) với (5)
(3) với (8)
(4) với (6)
Bài 70 (trang 103 SGK Toán 8 Tập 1): Cho góc vuông xOy, điểm A thuộc tia Oy sao cho OA = 2cm. Lấy B là một điểm bất kì thuộc tia Ox. Gọi C là trung điểm của AB. Khi điểm B di chuyển trên tia Ox thì điểm C di chuyển trên đường nào?
Lời giải:
- Cách 1:
Kẻ CH ⊥ Ox. Ta có CB = CA (gt).
CH // AO (cùng vuông góc Ox)
=> HB = OH => CH là đường trung bình của tam giác AOB
Điểm C cách tia Ox cố định một khoảng không đổi 1cm nên C di chuyển trên tia Em song song với Ox và cách Ox một khoảng bằng 1cm.
- Cách 2:
Vì C là trung điểm của AB nên OC là trung tuyến ứng với cạnh huyền AB do đó OC = CA.
Điểm C di chuyển trên tia Em thuộc đường trung trực của OA.
Bài 71 (trang 103 SGK Toán 8 Tập 1): Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE.
a) Chứng minh rằng ba điểm A, O, M thẳng hàng.
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất?
Lời giải:
a) Tứ giác ADME có
nên ADME là hình chữ nhật
O là trung điiểm của đường chéo DE nên O cũng là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng.
b) Kẻ AH ⊥ BC. Tương tự như bài 70 ta có hai cách chứng minh như sau:
- Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC)
Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
- Cách 2:
Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM.
Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH. Mặt khác vì M di chuyển trên cạnh BC nên O chỉ di chuyển trên cạnh PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
Bài 72 (trang 103 SGK Toán 8 Tập 1): Đố. Để vạch một đường thẳng song song với mép gỗ AB và cách mép gỗ 10cm, bác thợ mộc đặt đoạn bút chì CD dài 10cm vuông góc với ngón tay trỏ lấy làm cữ (h.98), rồi đưa ngón trỏ chạy dọc theo mép gỗ AB. Căn cứ vào kiến thức nào mà ta kết luận rằng đầu chì C vạch nên đường thẳng song song với AB và cách AB là 10cm?.
Hình 98
Lời giải:
- Căn cứ vào tính chất đường thẳng song song với một đường thẳng cho trước.
- Vì điểm C cách mép gỗ AB một khoảng không đổi bằng 10cm nên khi tay di chuyển thì đầu bút chì C vạch nên một đường thẳng song song với AB và cách AB một khoảng 10cm.