Giải bài 47 trang 219 SGK Đại Số và Giải Tích 11 nâng cao
Chương 5 : Đạo hàm Luyện tập (trang 219) Bài 47 (trang 219 sgk Đại Số và Giải Tích 11 nâng cao): a) Cho f(x)=tanx. Tính f (n) (x)với n=1,2,3 b) chứng minh rằng nếu f(x) = sin 2 x thì f (4x) (x) = -2 4n -1 cos2x (1) Lời giải: a) f’(x) = 1 + tan 2 x ...
Chương 5 : Đạo hàm
Luyện tập (trang 219)
Bài 47 (trang 219 sgk Đại Số và Giải Tích 11 nâng cao):
a) Cho f(x)=tanx. Tính f(n)(x)với n=1,2,3
b) chứng minh rằng nếu f(x) = sin2x thì f(4x)(x) = -24n -1cos2x (1)
Lời giải:
a) f’(x) = 1 + tan2x
f’’(x) = 2tanx(1 + tan2x)
f(3)(x) = 2(1 + tan2x) 2 + 4tan2x(1 + tan2x)
b) Với n=1 ta có
f'(x) = sin2x
f’’(x) = 2cos2x
f(3)(x) = -4sin2x
f(4)(x) = -8cos2x
Vậy (1) đúng với n=1
Giả sử (1) đúng với n=k tức là :f(4k)(x) = -24k -1cos2x
Với n=k+1 ta có:
f(4k+1)(x) = (f4k(x)) = 24ksin2x
f(4k+2)(x) = 2f4k+1cos2x
f(4k+3)(x) = -2f4k+2sin2x
f(4k+4)(x) = -2f4k+3cos2x
Vậy (1) đúng với n=k+1 do đó (1) đúng với mọi n.
Các bài giải bài tập Đại Số và Giải Tích 11 nâng cao Bài Luyện tập (trang 219) Chương 5