Đề thi thử vào lớp 10 môn Toán trường THCS An Đà, Hải Phòng năm học 2015-2016 (Lần 1)
Đề thi thử vào lớp 10 môn Toán trường THCS An Đà, Hải Phòng năm học 2015-2016 (Lần 1) Đề thi thử vào lớp 10 môn Toán có đáp án có đáp án là tài liệu luyện thi vào lớp 10 hữu ích dành cho các em học sinh ...
Đề thi thử vào lớp 10 môn Toán trường THCS An Đà, Hải Phòng năm học 2015-2016 (Lần 1)
có đáp án là tài liệu luyện thi vào lớp 10 hữu ích dành cho các em học sinh và thầy cô giáo tham khảo trong kì thi tuyển sinh vào lớp 10. Hy vọng các em sẽ đạt kết quả cao trong kì thi sắp tới.
Đề thi thử vào lớp 10 môn Ngữ Văn trường THCS An Đà, Hải Phòng năm học 2015-2016 (Lần 1)
Đề thi thử vào lớp 10 môn Toán
UBND QUẬN NGÔ QUYỀN |
ĐỀ THI THỬ TUYỂN SINH VÀO LỚP 10 |
Lưu ý: Đề thi gồm 02 trang, học sinh làm bài vào tờ giấy thi.
I. TRẮC NGHIỆM (2 điểm): Chọn đáp án đúng
A. x ≥ 0; x ≠ 1 B. x ≥ 0; x ≠ -1 C. x ≤ 0 x ≠ -1 D. x ≤ 0 x ≠ 1
Câu 2: Cho năm điểm A(1; 2), B(-1; 2), C(-2; -8), D(-2; 4), E(√2; 4).
Ba điểm nào trong năm điểm trên cùng thuộc parabol (P): y = 2x2
A. A, B, C B. A, B, D C. B, D, E D. A, B, E
Câu 3: Cho phương trình 2x2 – 3x - 1 = 0 có hai nghiệm phân biệt x1, x2
Giá trị của B = 1/x1 + 1/x2 là
A. 1 B. - 3 C. 3 D. 2
Câu 4: Cho phương trình x – y = 1 (1). Phương trình nào dưới đây có thể kết hợp với (1) để được một hệ phương trình có vô số nghiệm
A. 2y = 2x - 2 B. y = 1 + x C. 2y = 2 – 2x D. y = 2x - 2
Câu 5: Cho (O; 1cm) và dây AB = 1cm. Khoảng cách từ tâm O đến dây AB bằng:
A. 1/2cm B. √3cm C. √3/2cm D. 1/√3cm
Câu 6: Độ dài cung 600 của đường tròn bán kính 2cm bằng:
A. 1/3 πcm B. 2π/3cm C. 3/2 πcm D. 1/2 πcm
Câu 7: Cho tam giác MNP vuông tại M, đường cao MH. Biết NH = 5cm, HP = 9cm. Độ dài MH bằng:
A. 7cm B. 4cm C. 4,5cm D. cm
Câu 8: Cho hình vẽ, biết AD là đường kính của (O), góc ACB = 500. Số đo x bằng:
A. 500 B. 450 C. 400 D. 350
II. TỰ LUẬN (8 điểm):
Bài 1 (2,0 điểm):
1. Cho biểu thức
a. Rút gọn biểu thức A
b. Tìm x để A = 5/6.
Bài 2 (2,0 điểm):
1. Xác định giá trị của a để đường thẳng (d): y = 2015x - a2 + 1 cắt parabol (P): y = x2 tại hai điểm nằm về hai phía của trục tung.
2. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.
Biết rằng, theo quy định tốc độ tối đa của xe đạp điện là 25 km/h. Hai bạn Tuấn và Hoa học trường nội trú, một hôm hai bạn cùng xuất phát một lúc để đi từ trường đến trung tâm văn hóa các dân tộc trên quãng đường dài 26 km bằng phương tiện xe đạp điện. Mỗi giờ Tuấn đi nhanh hơn Hoa 2km nên đến nơi sớm hơn 5 phút. Hỏi hai bạn đi như vậy có đúng vận tốc quy định hay không?.
Bài 3 (3,0 điểm):
Cho nửa đường tròn tâm O đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O), trên cung BC lấy điểm D bất kỳ (D khác B và C). Đường thẳng đi qua H và vuông góc với AO cắt nửa đường tròn tại C. Gọi giao điểm của tiếp tuyến với nửa đường tròn kẻ từ D với HC là E, giao điểm của AD và HC là I.
a) Chứng minh tứ giác HBDI nội tiếp được.
b) Chứng minh tam giác DEI là tam giác cân.
c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD, K là giao điểm của BC với đường tròn (F). Chứng minh: KI song song với AB và góc ABF có số đo không đổi khi D chạy trên cung BC (D khác B và C).
Bài 4 (1,0 điểm):
a) Cho hai số a, b ≥ 0. Chứng minh bất đẳng thức: a3 + b3 ≥ ab(a + b)
b) Tìm giá trị lớn nhất của biểu thức:
Với mọi số a, b, c dương và abc = 1.
Đáp án đề thi thử vào lớp 10 môn Toán
I. Trắc nghiệm: Mỗi câu đúng được 0,25đ
Câu |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Đáp án |
C |
D |
B |
A |
C |
B |
D |
C |
II. Tự luận
Bài 1 (2,0 điểm)
Bài 2: 2,0 điểm
1. Xét PT hoành độ giao điểm x2 - 2015x + a2 - 1 = 0 (1).
Đường thẳng (d) và parabol (P) cắt nhau tại hai điểm nằm về hai phía của trục tung khi và chỉ khi PT (1) có hai nghiệm phân biệt trái dấu
↔ ac = 1.(a2 - 1) < 0 ↔ a2 < 1 ↔ |a| < 1 ↔ -1 < a < 1
Vậy với.........
2. Gọi vận tốc của Hoa là x (km/h), ĐK: x > 0, khi đó vận tốc của Tuấn là x + 2 (km/h)
Thời gian Hoa đi hết quãng đường là: 26/x (h), thời gian Tuấn đi hết quãng đường là: 26/(x + 2) (h)
Vì Tuấn đến nơi sớm hơn 5 phút, ta có phương trình:
26/x - 26/(x + 2) = 1/12 ↔ x2 + 2x - 624 = 0
Suy ra: x = 24 (TMĐK của ẩn); x = -26 (KTMĐK, loại)
Vận tốc của Hoa là 24 km/h, của Tuấn là 26 km/h
Vì 24 < 25 và 26 > 25. Vậy Hoa đi đúng vận tốc quy định, còn Tuấn đi không đúng vận tốc quy định.