14/01/2018, 12:51

Đề thi Olympic Toán sinh viên Đại học Sư Phạm TP HCM năm 2013

Đề thi Olympic Toán sinh viên Đại học Sư Phạm TP HCM năm 2013 ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KỲ THI OLYMPIC TOÁN SINH VIÊN 2013 MÔN: TOÁN HỌC MÔN THI: GIẢI TÍCH Câu 1: Cho |q| < 1 và ...

Đề thi Olympic Toán sinh viên Đại học Sư Phạm TP HCM năm 2013

ĐẠI HỌC SƯ PHẠM THÀNH PHỐ
HỒ CHÍ MINH

KỲ THI OLYMPIC TOÁN SINH VIÊN 2013

MÔN: TOÁN HỌC

MÔN THI: GIẢI TÍCH

Câu 1:

Cho |q| < 1 và limn-→∞ εn = 0

Giả sử dãy (an) không âm và thoả mãn: an1 ≤ qanεn, với mọi n thuộc N

Chứng minh: limn→∞ an = 0

Câu 2: Giả sử hai dãy (an), (bn) thoả các điều kiện sau:

Tìm limn→∞ an; limn→∞ bn

Câu 3:

Cho P(x),Q(x) là các đa thức hệ số thực thoả mãn:

P[exxQ(x)x2Q2(x)] = Q[exxP(x)x2P2(x)], với mọi x thuộc R

Chứng minh P ≡ Q

Câu 4:

Cho f liên tục trên [a;b], khả vi trên (a,b) và f'(x) # 0 với mọi x thuộc (a, b)

Chứng minh rằng: 

Câu 5: Cho a1, a2,...., a2013; b1, b2, ..., b2013 > 0 sao cho: ax1ax2...ax2013 ≥ bx1bx2...bx2013, với mọi x thuộc R

Xét tính đơn điệu của hàm số: 

Câu 6: Cho f thuộc C2[0; a], a > 0, f(x) ≥ 0, f'(x) ≥ 0, với mọi x thuộc [0; a]

Giả sử f(0) = f(a) = 1. Gọi m = min[0; a]f(x), chứng minh: 

MÔN THI: ĐẠI SỐ

Bài 1: Cho A là ma trận cấp 2 × 3 và B là ma trận cấp 3 × 2 thỏa:

Tìm AB

Bài 2: Cho n là số nguyên dương, x, a, b là các số thực với a # b. Ký hiệu M_n là ma trận vuông cấp 2n thỏa:

Tìm: 

Bài 3: Cho A thuộc Mn(R). Chứng minh rằng AtA và At có cùng hạng.

Bài 4: Cho ma trận A như sau với bi # 0, với mọi i thuộc {1; 2; ... ; n}

Chứng minh rằng (A) ≥ n - 1

Bài 5:

a) Cho x1, ..., xn là n vector khác không của kgvt V và φ: V → V là một phép biến đổi tuyến tính thỏa φx1 = x2, φxk = xk - xk-1 với k = 2,3,…,n

Chứng minh rằng hệ vector x1,..., xn độc lập tuyến tính.

b) Chứng minh rằng hệ vector {|x - 1|, |x - 2|, ..., |x - n|} độc lập tuyến tính trong không gian các hàm số liên tục trên R

Bài 6:

Cho A,B là hai ma trận đối xứng cấp n. Giả sử tồn tại hai ma trận X,Y cấp n thỏa det(AXBY) # 0. Chứng minh det(A2B2) # 0

Bài 7:

Cho A, B, C, D thuộc Mn(R)  thỏa ABt và CDt là hai ma trận đối xứng và ADt - BCt = I. Chứng minh rằng: AtD - CtB = I

Bài 8:

Cho P,Q,U,V là các ma trận cấp 2 thỏa U,V là 2 nghiệm phân biệt của phương trình X2 - PXQ = 0 và U-V khả nghịch.

Chứng minh Tr(UV) = Tr(P) và det(UV) = det(Q)

Bài 9: Cho P là đa thức hệ số thực có n nghiệm thực phân biệt lớn hơn 1. Xét Q(x) = (x21)P(x)P'(x)x(P2(x)P'2(x))

Q(x) có ít nhất 2n-1 nghiệm thực phân biệt đúng hay sai?

0