06/05/2018, 16:27

Chứng minh đồ thị hàm số luôn đi qua một điểm cố định

A. Phương pháp giải B. Bài tập tự luận Bài 1: Chứng minh các đường thẳng có phương trình sau luôn đi qua 1 điểm cố định. a, y = 3(m + 1)x - 3m - 2 b, (m + 2)x + (m-3)y - m + 8 = 0 Hướng dẫn giải a, y = 3(m + 1)x - 3m - 2 Giả sử đồ thị hàm số đi qua ...

A. Phương pháp giải

Chuyên đề Toán lớp 9

B. Bài tập tự luận

Bài 1: Chứng minh các đường thẳng có phương trình sau luôn đi qua 1 điểm cố định.

a, y = 3(m + 1)x - 3m - 2

b, (m + 2)x + (m-3)y - m + 8 = 0

Hướng dẫn giải

a, y = 3(m + 1)x - 3m - 2

Giả sử đồ thị hàm số đi qua điểm M(xo;yo) với mọi m

Ta có: yo = 3(m+1)xo - 3m - 2

⇔ yo = 3xom + 3xo - 3m - 2

⇔ (3xo -3)m = yo - 3xo + 2

⇔ 3xo - 3 = 0 và yo - 3xo + 2 = 0

⇔ xo = 1; yo = 1

b, (m + 2)x + (m-3)y - m + 8 = 0

Giả sử đồ thị hàm số đi qua điểm M(xo; yo) với mọi m

Ta có: (m+2)xo + (m-3)yo - m + 8 = 0

⇔ mxo + 2xo + myo - m + 8 = 0

⇔ m(xo + yo -1) + 2xo - 3yo + 8 = 0

⇔ xo + yo - 1 = 0 và -2xo + 3yo - 8 = 0

⇔ xo = -1 và yo = 2

Bài 2: Cho đường thẳng (d) có dạng: y=(2a-1)x-3.

a, Viết phương trình đường thẳng (d) biết đường thẳng đi qua A(1;-1)

b, Viết phương trình đường thẳng (d’) vuông góc với đường thẳng (d) và cắt trục tung tại B có tung độ là 4/3 .

c, Vẽ (d) và (d’) trên cùng một mặt phẳng tọa độ. Tìm giao điểm C giữa (d) và (d’).

Hướng dẫn giải

Chuyên đề Toán lớp 9

a) A(1;-1) thuộc vào (d) nên: -1 = (2a-1).1 -3 ⇔ 2a = 3 ⇔ a = 3/2

Phương trình đường thẳng (d): y=(2. 3/2 - 1)x - 3 ⇔ y = 2x - 3.

b) Phương trình đường thẳng (d’) có dạng y = a’x+b’

(d’) vuông góc với (d) ⇔ a’.2 = -1 ⇔ a’ = -1/2

Vậy (d’): y= -1/2x + b

Tọa độ điểm B(0; 4/3) thuộc (d) ⇔ 4/3 = -1/2.0 + b ⇔ b = 4/3

Phương trình đường thẳng (d’): y= -1/2x + 4/3

c, Phương trình hoành độ giao điểm C giữa (d) và (d’):

2x-3 = -1/2x + 4/3

2x+ 1/2x= 4/3 + 3

5/2x = 13/3

x = 26/15

=> y = 2.26/15 - 3 = 7/15

Vậy C(26/15; 7/15)

Tham khảo thêm các Chuyên đề Toán lớp 9

0