Câu 9 trang 46 SGK Giải tích 12
Câu 9 trang 46 SGK Giải tích 12 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ...
Câu 9 trang 46 SGK Giải tích 12
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
Bài 9.
a) Khảo sát sự biến thiên và vẽ đồ thị ((C)) của hàm số
(f(x) = {1 over 2}{x^4} - 3{x^2} + {3 over 2})
b) Viết phương trình tiếp tuyến của đồ thị ((C)) tại điểm có hoành độ là nghiệm của phương trình (f’’(x) = 0)
c) Biện luận theo tham số (m) số nghiệm của phương trình: (x^4- 6x^2+ 3 = m)
Trả lời:
a) Xét hàm số y = (f(x) = {1 over 2}{x^4} - 3{x^2} + {3 over 2}) ((C))
Tập xác định: (D =mathbb R)
* Sự biến thiên:
(y’ = 2x^3- 6x = 2x(x^2– 3))
(y’ = 0 ⇔ x = 0, x = ±sqrt3)
- Hàm số nghịch biến trên khoảng ((-infty;-sqrt3)) và ((0;sqrt3)), đồng biến trên khoảng ((-sqrt 3;0)) và ((sqrt3;+infty)).
- Cực trị:
Hàm số đạt cực đại tại (x=0); (y_{CĐ}={3over 2})
Hàm số đạt cực tiểu tại hai điểm (x=-sqrt3) và (x=sqrt3); (y_{CT}=y_(pmsqrt3)=-3)
- Giới hạn:
(mathop {lim y}limits_{x o pm infty } = + infty )
- Bảng biến thiên:
* Đồ thị:
Hàm số đã cho là hàm số chẵn nhận trục (Oy) làm trục đối xứng.
b)
(y’’ = 6x^2– 6x)
(y’’ = 0 ⇔ 6x^2– 6x = 0 ⇔ x = ± 1)
(y’(-1) = 4, y’(1) = -4, y(± 1) = -1)
Tiếp tuyến của ((C)) tại điểm ((-1, -1)) là : (y = 4(x+1) – 1= 4x+3)
Tiếp tuyến của ((C)) tại điểm ((1, -1)) là: (y = -4(x-1) – 1 = -4x + 3)
c) Ta có: ({x^4} - 6{x^2} + 3 = m Leftrightarrow {1 over 2}{x^4} - 3{x^2} + {3 over 2} = {m over 2}) (1)
Số nghiệm của (1) là số giao điểm của ((C)) và đường thẳng (d) : (y = {m over 2})
Từ đồ thị ta thấy:
(m < -6): ( 1) vô nghiệm
(m = -6) : (1) có 2 nghiệm
(-6 < m < 3): (1) có 4 nghiệm
(m = 3): ( 1) có 3 nghiệm
(m > 3): (1) có 2 nghiệm
soanbailop6.com