27/04/2018, 15:57

Câu 57 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức: ...

Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:

Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:

S = p.r

Giải:

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC.

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.

Ta có: ({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}})

                    (= {1 over 2}.AB.r + {1 over 2}.AC.r + {1 over 2}.BC.r)

                     (= {1 over 2}(AB + AC + BC).r)

Mà AB + AC + BC = 2p

Nên ({S_{ABC}} = {1 over 2}.2p.r = p.r)

soanbailop6.com

0