Câu 32 trang 42 SBT Toán 7 tập 2: Chứng minh rằng nếu một tam giác có hai đường trung tuyến bằng...
Chứng minh rằng nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân. . Câu 32 trang 42 Sách Bài Tập (SBT) Toán lớp 7 tập 2 – Bài 4: Tính chất ba đường trung tuyến của tam giác Chứng minh rằng nếu một tam giác có hai đường trung tuyến bằng nhau thì tam ...
Chứng minh rằng nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Giải
Giả sử ∆ABC có hai đường trung tuyến BD, CE và BD = CE. Gọi G là giao điểm BD và CE.
(BG = {2 over 3}B{ m{D}}) (tính chất đường trung tuyến)
(CG = {2 over 3}CE) (tính chất đường trung tuyến)
Suy ra: BG = CG
BD = CE
( Rightarrow ) BG + GD = CG + GE
Xét ∆BGE và ∆CGD:
BG = CG (chứng minh trên)
(widehat {BGE} = widehat {CG{ m{D}}}) (đối đỉnh)
GE = GD (chứng minh trên)
Do đó: ∆BGE = ∆CGD (c.g.c)
( Rightarrow ) BE = CD (1)
(BE = {1 over 2}AB) (Vì E là trung điểm AB) (2)
(C{ m{D = }}{1 over 2}AC) (Vì D là trung điểm AC) (3)
Từ (1), (2) và (3) suy ra: AB = CD.Vậy ∆ABC cân tại A.